K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )

mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )

Vậy chữ số tận cùng của C là 6

b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )

mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )

do đó : \(1986^8=20k+16\); với k thuộc N

\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )

lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )

\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )

từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )

vậy C có hai chữ số tận cùng là 76

16 tháng 4 2020

sai rồi phải là 96 chứ 96*76:R100= 96 mà

17 tháng 5 2016

Ta có 6^1 có chữ số tận cùng là 6

          6^2 có chữ số tận cùng là 6

          6^3 có chữ số tận cùng là 6

   ...

=>6^k có chữ số tận cùng là 6(kEN*)

=>6^8 có chữ số tận cùng là 6

=>19781986^8 có chữ số tận cùng là 6

=>C có chữ số tận cùng là 6 

17 tháng 5 2016

Ta có: các số tự nhiên tận cùng bằng 0,1,5,6 khi nâng lên lũy thừa bất kì (khác 0) vẫn giữ nguyên chữ số tận cùng của nó

Vậy chữ số tận cùng của C=1978198686

9 tháng 9 2019

Ta có: 

\(1980=20.99\)

=> \(A=17^{1980}=17^{20.99}=\left(17^{20}\right)^{99}\equiv1^{99}\equiv1\left(mod100\right)\)

Hai chữ số tận cùng của A là 01

8 tháng 5 2016

Tách 2^999(2^9)^111

rồi suy ra theo mod 100

17 tháng 4 2017

2^10 = 1024 => 2^10 đồng dư 24 modun 100 
=> 2^50 đồng dư 24^5 theo modun 100 
mà 24^5 =7962624 đồng dư 24 theo modun 100 
=> 2^50 đồng dư 24 modun 100 
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100 
vậy 2 chữ số tận cùng của 2^100 là 76 :-) 

17 tháng 4 2017

2100=(220)5=(....76)5=(....76)

Vậy chữ số tận cùng là 6

- Ủng hộ -

~minhanh~