các bạn giúp mình đc ko ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I)1.B
2.B
3.C
4.D
5.C
II)
1.B
2.D
3.B
4.B
5.A
6.B
7.tell....way.
8.C
III)
1.isn't teaching
2.drive
3.has
1:
a: f(x)=3x^2-15x+7x^3-2x^2-4x=7x^3+x^2-19x
Bậc là 3
g(x)=x^2-6x+9+7+3x^2-x^3=-x^3+4x^2-6x+16
Bậc là 3
b: f(x)+g(x)
=7x^3+x^2-19x-x^3+4x^2-6x+16
=6x^3+5x^2-25x+16
f(x)-g(x)
=7x^3+x^2-19x+x^3-4x^2+6x-16
=8x^3-3x^2-13x-16
c: f(-1)=-7+1+19=13
g(-2/3)=8/27+4*4/9-6*(-2/3)+16=596/27
2:
a: f(x)=4x^3-12x^2-10x-14
g(x)=4x^3-24x^2-7x^2+15x^4=15x^4+4x^3-31x^2
Bậc của f(x) là 3
Bậc của g(x) là 4
b: f(x)+g(x)
=4x^3-12x^2-10x-14+15x^4+4x^3-31x^2
=15x^4+8x^3-43x^2-10x-14
f(x)-g(x)
=4x^3-12x^2-10x-14-15x^4-4x^3+31x^2
=-15x^4+19x^2-10x-14
c: f(-1)=-4-12+10=-6
g(-2/3)=15*16/81+4*(-8/27)-31*(-2/3)^2
=-12
có:
\(\sqrt{n+1}-\sqrt{n}\)
\(=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
Vì \(2\sqrt{n}< \sqrt{n+1}+\sqrt{n}< 2\sqrt{n+1}\)
\(\Rightarrow\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}>\dfrac{1}{2\sqrt{n+1}}\)
Vậy: \(\dfrac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \dfrac{1}{2\sqrt{n}}\)