Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)
d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)
a, \(x+1\ge0\Leftrightarrow x\ge-1\)
b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)
e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)
a)ĐK:`3x-6>=0`
`<=>3x>=6<=>x>=2`
b)ĐK:`-3x+9>=0`
`<=>-3x>=-9`
`<=>x<=3`
c)ĐK:`(-5)/(-3x+2)>=0(x ne -2/3)`
Vì `-5<0`
`<=>-3x+2<0`
`<=>-3x<-2`
`<=>x>2/3`
e)ĐK:`(5x-3)/(-4)>=0`
MÀ `-4<0`
`<=>5x-3<=0`
`<=>5x<=3`
`<=>x<=3/5`
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x< -2\end{matrix}\right.\)
b) ĐKXĐ: \(-\sqrt{2}\le x\le\sqrt{2}\)
c) ĐKXĐ: \(x\ge1\)
câu a trc nhé
câu b nek (bn thông cảm nha,mk gõ trên mathtype nên gõ văn bản hơi khó)