Giải PT sau
a) \(2x^2+20x+52=0\)
b) \(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-6\left(x-2\right)-x^2}{x^2-4}=0\)
\(\Leftrightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tmdk\right)\)
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4.\)
Vậy \(S=\left\{4\right\}\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=\dfrac{-3}{2}.\end{matrix}\right.\)
Vậy \(S=\left\{2;\dfrac{-3}{2}\right\}\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Rightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tm\right).\)
Vậy \(S=\left\{8\right\}\)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
bạn tách một câu vài câu hỏi chứ đừng gộp như thế này ko ai trả lời đâu
a: =>\(4x-5=2x-2+x=3x-2\)
=>x=3
b: \(\Leftrightarrow7x-35=3x+6\)
=>4x=41
=>x=41/4
c: =>(2x+5)(x+5)-2x^2=0
=>2x^2+10x+5x+25-2x^2=0
=>15x=-25
=>x=-5/3
e: \(\Leftrightarrow\dfrac{11}{x}=\dfrac{9x-36+2x+2}{\left(x+1\right)\left(x-4\right)}\)
=>11(x^2-3x-4)=x(11x-34)
=>11x^2-33x-44=11x^2-34x
=>x=44
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
a) \(2x^2+20x+52=0\Rightarrow x^2+10x+26=0\Rightarrow\left(x+5\right)^2+1=0\)
\(\Rightarrow\) vô nghiệm
b) ĐK: \(x\ne1;-1\)
\(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{17}{x-1}+\dfrac{8}{x-1}=0\)
\(\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{9}{x-1}=0\Rightarrow\dfrac{2x-19-45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow-43x-64=0\Rightarrow x=-\dfrac{64}{43}\)
a) Ta có: \(\Delta'=100-104=-4< 0\)
Vậy phương trình vô nghiệm.
b) ĐKXĐ: \(x\ne1;x\ne-1\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x^2-1\right)}=\dfrac{17}{x-1}-\dfrac{8}{x-1}\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{9}{x-1}\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow2x-19=45x+45\)
\(\Leftrightarrow43x=-64\)
\(\Leftrightarrow x=-\dfrac{64}{43}\)(TM)
Vậy phương trình có nghiệm là: \(x=-\dfrac{64}{43}\)