K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F

Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)

Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)

\(NH=\left(MNP\right)\cap\left(SCD\right)\)

\(GM=\left(MNP\right)\cap\left(SBC\right)\)

13 tháng 8 2021

Sao biết PE cắt SA

3 tháng 11 2019

NV
12 tháng 12 2020

OP là đường trung bình tam giác BCD \(\Rightarrow OP//CD\)

Gọi Q là trung điểm SC \(\Rightarrow\) NQ là đường trung bình tam giác SCD \(\Rightarrow NQ//CD//OP\)

\(\Rightarrow NQ=\left(NPO\right)\cap\left(SCD\right)\)

Trong mp (SBD), nối NM kéo dài cắt SB tại G

\(\Rightarrow AG=\left(SAB\right)\cap\left(AMN\right)\)

Trong mp (ABCD), nối PM kéo dài cắt AD tại H

Trong mp (SAD), nối HN cắt SA tại E

\(\Rightarrow E=SA\cap\left(MNP\right)\)

Nhìn đi nhìn lại cũng ko biết ME//PN kiểu gì

Dễ dàng chứng minh EG=EN, mà  GM=3MP nên ME không thể song song PN

Gọi F là giao điểm của MP và AB, I là giao điểm MP và CD

Trong mp (SCD), nối IN cắt SC tại J

Thiết diện là đa giác FENJP

13 tháng 12 2020

undefined

undefined

P/s: Ngu phần hình ko gian nên chỉ giúp được thế này thôi nhó :)

a: Xét hình thang ABCD có

M,N lần lượt là trung điểm của AB,CD

nên MN là đường trung bình

=>MN//AD//BC

=>MN//(SAD) và MN//(SBC)

b: Gọi giao của MN với BD là O

=>O thuộc (SBD) giao (MNP)

MP//SB

=>\(\left(SBD\right)\cap\left(MNP\right)=xy\left(O\in xy\right);\)xy//MP//SB

 

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)