Mọi đường thẳng của họ \(\left(x-1\right)cos\alpha+\left(y-1\right)sin\alpha=4\) đều tiếp xúc với một đường tròn (C) cố định. Bán kính của (C) là bn?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(R=d\left(I;d\right)=\dfrac{\left|3-5.\left(-2\right)+1\right|}{\sqrt{1^2+\left(-5\right)^2}}=\dfrac{14}{\sqrt{26}}\)
b.
\(d\left(M;\Delta\right)=\dfrac{\left|4sina+4\left(2-sina\right)\right|}{\sqrt{cos^2a+sin^2a}}=8\)
Vì ta chưa xác định được hình dạng của đường cong cố định nên ta sử dụng phương pháp đường biên của hình lồi
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi \(\alpha\)
\(2x_0\sin\alpha+2y_0\cos\alpha+4\sin\alpha+1=0\)
\(\Leftrightarrow\left(2x_0+4\right)\sin\alpha+2y_0\cos\alpha+1=0\) (*)
(*) vô nghiệm \(\Leftrightarrow\left(2x_0+4\right)^2+4y^2_0< 1\Leftrightarrow\left(x_0+2\right)^2+y_0^2< \frac{1}{4}\)
Xét đường tròn (C) tâm I(-2;0) và bán kính \(R=\frac{1}{2}\) , ta có :
\(d\left(I,\Delta_{\alpha}\right)=\frac{\left|-4\sin\alpha+2.0\cos\alpha+4\sin\alpha+1\right|}{\sqrt{4\sin^2\alpha+4\cos^2\alpha}}=\frac{1}{2}=R\Rightarrow\Delta_{\alpha}\) luôn tiếp với (C)
Bạn xem lại biểu thức A. Biểu thức $A$ sau khi rút gọn thì \(A=\frac{-2\sin ^2a}{3\cos 2a}\) vẫn phụ thuộc vào $a$
------------
Sử dụng công thức: \(\sin (90-a)=\cos a; \cot (90-a)=\tan a\), ta có:
\(B=\tan ^260(\sin ^8a-\cos ^8a)+4\cos 60(\cos ^6a-\sin ^6a)-\cos ^6a(\tan ^2a-1)^3\)
\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-\cos ^6a\left(\frac{\sin ^2a}{\cos ^2a}-1\right)^3\)
\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-(\sin ^2a-\cos ^2a)^3\)
\(=3(\sin ^2a-\cos ^2a)(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a)+2(\cos ^2a-\sin ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)
\(=3(\sin ^2-\cos ^2a)(\sin ^4a+\cos ^4a)-2(\sin ^2a-\cos ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)
\(=(\sin ^2a-\cos ^2a)[3(\sin ^4a+\cos ^4a)-2(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^2]\)
\(=(\sin ^2a-\cos ^2a).0=0\). Do đó giá trị của biểu thức không phụ thuộc vào $a$
Giả sử họ đường thẳng tiếp xúc với đường tròn (C) tâm \(I\left(a;b\right)\) bán kính R
\(\Rightarrow\) với mọi góc \(\alpha\) ta luôn có:
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|\left(a-1\right)cos\alpha+\left(b-1\right)sin\alpha-4\right|}{\sqrt[]{sin^2\alpha+cos^2\alpha}}=R\)
\(\Leftrightarrow\left|\left(a-1\right)cos\alpha+\left(b-1\right)sin\alpha-4\right|=R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\\\left|-4\right|=R\end{matrix}\right.\) \(\Rightarrow R=4\)