K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

3) 2 + 22= 2 + 2.2 = 2 .( 1+2 ) = 2. 3

các phần còn lại tương tụ nhé !

 

15 tháng 7 2018

2.3 nha

27 tháng 11 2019

Em kiểm tra lại đề bài nhé.

c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath

b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath

a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath

DT
4 tháng 2 2023

`A=1+2+2^2+2^3+2^4+...+2^{200}`

`=>2A=2+2^2+2^3+2^4+2^5+...+2^{201}`

`=>2A-A=(2+2^2+2^3+2^4+2^5+...+2^{201})-(1+2+2^2+2^3+2^4+...+2^{200})`

`=>A=2^{201}-1`

`=>A+1=2^{201}`

6 tháng 1 2022

b

9 tháng 8 2017

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

30 tháng 9 2016

1.

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22 + 23 + 24 + ... + 2201

2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

2.

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

11 tháng 11 2016

Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200

=> 2A = 2 + 22 + 23 + ....... + 2201

=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 ) 

=>        A = 2201 - 1 

=>  A + 1 = 2201

11 tháng 11 2016

A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200

2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201

2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )

           -  ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )

A         = 2 ^ 201 - 1

=> A + 1 = 2 ^ 201

B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005

3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006

3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )

            - ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )

2B      = 3 ^ 2006 - 3

=> 2B = 3 ^ 2006

Vậy 2B + 3 là lũy thừa của 3

5 tháng 9 2015

a) A = 22007-1 => A + 1  = 22007

b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006

c) C = 4 + 22 + 23+...+22005 = 2+ 2+ ...+ 22005 + 4

2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.