Cho a, b ,c không âm chứng minh (a+b)(b+c)(c+a)≥8abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm đc là phải tịk nha!
a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0
Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1
Cho các số dương a,b,c không âm
Và a+b+c=1
Chứng minh (1-a)(1-b)(1-c)lớn hơn bằng 8abc
Giúp mk với nha!
Đề phải cho \(a,b,c\) là các số dương nữa :)
Giải:
Áp dụng BĐT Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 số dương a;b;c ta có :
\(a+b\ge2\sqrt{ab}\) (dấu "=" xảy ra \(\Leftrightarrow a=b\) )
\(b+c\ge2\sqrt{bc}\) (dấu "=" xảy ra \(\Leftrightarrow b=c\) )
\(c+a\ge2\sqrt{ca}\) (dấu "=" xảy ra \(\Leftrightarrow a=c\) )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8abc\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Dùng BĐT phụ : \(\left(x+y\right)^2\ge4xy\)
Ta có : \(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\); \(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2=\left(8abc\right)^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)
Dấu "=" xảy ra khi a = b = c
\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
\(VT\ge2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}=8abc\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Lời giải:
Vì $A+B+C=1$ ta có:
$(1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)$
Áp dụng BĐT AM-GM cho các số dương:
$B+C\geq 2\sqrt{BC}; C+A\geq 2\sqrt{CA}; A+B\geq 2\sqrt{AB}$
$\Rightarrow (1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)\geq 2\sqrt{BC}.2\sqrt{CA}.2\sqrt{AB}$
hay $(1-A)(1-B)(1-C)\geq 8ABC$ (đpcm)
Dấu "=" xảy ra khi $A=B=C=\frac{1}{3}$
áp dụng bất đẳng thức cô-si với 2 số dương.
Ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)(vì a,b,c dương)
áp dụng BDT AM-GM
\(=>a+b\ge2\sqrt{ab}\)
\(=>b+c\ge2\sqrt{bc}\)
\(=>c+a\ge2\sqrt{ca}\)
\(=>VT\ge2.2.2\sqrt{ab.bc.ca}=8abc\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c
Áp dụng bất đẳng thức AM-GM:
\(a+b\ge2\sqrt{ab}\left(1\right)\\ a+c\ge2\sqrt{ac}\left(2\right)\\ b+c\ge2\sqrt{bc}\left(3\right)\)
Nhân vế theo vế \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\ge\right)8abc\) ( với \(a,b,c\ge0\) )