K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

Ta có:B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}=\frac{2-1}{2}+\frac{2^2-1}{2^2}+\frac{2^3-1}{2^3}+...+1-\frac{1}{2^{100}}\)

\(=1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^{100}}=100-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

=> \(B=100-\left(1-\frac{1}{2^{100}}\right)=100-1+\frac{1}{2^{100}}=99+\frac{1}{2^{100}}>99\) (Đpcm)

9 tháng 7 2021

Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)

=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)

=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)

=> 48S = \(1-\frac{1}{7^{100}}\)

=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)

Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)

8 tháng 7 2021

Sửa đề \(\frac{3}{2}+\frac{5}{2^2}+\frac{9}{2^3}+...+\frac{2^{100}+1}{2^{100}}=\frac{2+1}{2}+\frac{2^2+1}{2^2}+\frac{2^3+1}{2^3}+...+\frac{2^{100}+1}{2^{100}}\)

\(\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1) 

\(100+\left(1-\frac{1}{2^{100}}\right)=101-\frac{1}{2^{100}}< 101\)(1)

Vì \(-\frac{1}{2^{100}}>-1\Rightarrow101-\frac{1}{2^{100}}>101-1\Rightarrow B>100\)(2)

Từ (1) và (2) => 100 < B < 101 

14 tháng 7 2021

khong biet

DD
14 tháng 7 2021

\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)

\(=\frac{1}{3}\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)

\(=\frac{1}{3}\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{61.64}\right)\)

\(=\frac{325}{3904}\)

8 tháng 7 2021

Ta có \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\)

\(\frac{2-1}{2}+\frac{2^2-1}{2^2}+\frac{2^3-1}{2^3}+...+\frac{2^{100}-1}{2^{100}}\)

\(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^{100}}\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1)

\(=100-\left(1-\frac{1}{2^{100}}\right)=100-1+\frac{1}{2^{100}}=99+\frac{1}{2^{100}}>99\)(đpcm)

9 tháng 7 2021

Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)

=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)

=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)

=> 15S = \(2^3-\frac{1}{2^{101}}\)

=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)

Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)

9 tháng 7 2021

kết bạn đi toán lớp mấy vậy

\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)

\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)

\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)

\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)

\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)

=> -1,44444444444........... ≤ x ≤ 0,6111111111...........

Mà x ∈ Z

=> x ∈ { -1 ; 0 }

14 tháng 7 2021

\(x\in\varnothing\) 

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

9 tháng 7 2021

Đặt S = \(\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{100}}\)

=> 6S = \(1+\frac{1}{6}+\frac{1}{6^2}+...+\frac{1}{6^{99}}\)

=> 6S - S = \(\left(1+\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{99}}\right)-\left(\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{100}}\right)\)

=> \(5S=1-\frac{1}{6^{100}}\)

=> \(S=\frac{1-\frac{1}{6^{100}}}{5}\)

Khi đó A = \(\left(1-\frac{1}{6^{100}}\right):\left(\frac{1-\frac{1}{6^{100}}}{5}\right)=5\)