B1:Tìm a để biểu thức sau có nghĩa
1.\(\sqrt{a^2+2a-3}\)
2.\(\sqrt{\dfrac{\left(a-1\right)^3}{a^2}}\)
3.\(\sqrt{\dfrac{a^2+1}{2a}}\)
4.\(\sqrt{\dfrac{a-1}{2a+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để biểu thức có nghĩa thì \(\dfrac{-a}{3}\ge0\Rightarrow a\le0\)
b) Để biểu thức có nghĩa thì \(\dfrac{1}{a^2}\ge0\) (luôn đúng)
c) Để biểu thức có nghĩa thì \(\dfrac{\left(1-a\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(1-a\right)^3\ge0\\a\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\a\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a\le1\\a\ne0\end{matrix}\right.\)
d) Để biểu thức có nghĩa thì \(\dfrac{a^2+1}{1-2a}\ge0\Rightarrow1-2a>0\Rightarrow a< \dfrac{1}{2}\)
e) Để biểu thức có nghĩa thì \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left|a\right|\ge1\)
f) Để biểu thức có nghĩa thì \(\Rightarrow\dfrac{2a-1}{2-a}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2a-1\ge0\\2-a>0\end{matrix}\right.\\\left\{{}\begin{matrix}2a-1\le0\\2-a< 0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\a< 2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le\dfrac{1}{2}\\a>2\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le a< 2\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)
\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
= \(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)
= \(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)
= \(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\)
c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)
\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\)) \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\)
Vậy...
`M=sqrt{(3a-1)^2}+2a-3`
`=|3a-1|+2a-3`
`=3a-1+2a-3(do \ a>=1/3)`
`=5a-4`
`N=sqrt{(4-a)^2}-a+5`
`=|4-a|-a+5`
`=a-4-a+5(do \ a>4)`
`=1`
`I=sqrt{(3-2a)^2}+2-7`
`=|3-2a|-5`
`=3-2a-5(do \ a<3/2)`
`=-2-2a`
`K=(a^2-9)/4*sqrt{4/(a-2)^2}`
`=(a^2-9)/4*|2/(a-2)|`
`=(a^2-9)/(2|a-2|)`
Nếu `3>a>2=>|a-2|=a-2`
`=>K=(a^2-9)/(2(a-2))`
Nếu `a<2=>|a-2|=2-a`
`=>K=(a^2-9)/(2(2-a))`
\(M=\left|3a-1\right|+2a-3\)
Mà \(a-\dfrac{1}{3}\ge0\)
\(\Rightarrow M=3a-1+2a-3=5a-4\)
\(N=\left|4-a\right|-a+5\)
Mà \(4-a< 0\)
\(\Rightarrow N=a-4-a+5=1\)
\(I=\left|3-2a\right|-5\)
Mà \(a-\dfrac{3}{2}< 0\)
\(\Rightarrow I=3-2a-5=-2a-2\)
K, Ta có : \(a-3< 0\)
\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{a+1-1}{\sqrt{a+1}}\cdot\dfrac{a^2+3\sqrt{a+1}-2a+2a-a^2}{a}\)
\(=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}}=3\)
\(A=1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\\ =1+\left(\dfrac{2a+2\sqrt{a}-\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right).\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\dfrac{2\sqrt{a}-1+2a+2a\sqrt{a}-a-2a\sqrt{a}+\sqrt{a}-a}{-\left(\sqrt{a}-1\right)\left(1+\sqrt{a}+a\right)}\)
\(=1+\dfrac{2\sqrt{a}-1+0}{1+\sqrt{a}+a}.\dfrac{\sqrt{a}\left(-1\right)}{2\sqrt{a}-1}\\ =1+\dfrac{1}{1+\sqrt{a}+a}.\sqrt{a}.\left(-1\right)\)
\(=1-\dfrac{\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+\sqrt{a}+a-\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+a}{1+\sqrt{a}+a}\)
1) Để biểu thức có nghĩa thì \(a^2+2a-3\ge0\)
\(\Leftrightarrow\left(a+3\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-1\ge0\\a+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a-1\ge0\\a\ne0\end{matrix}\right.\Leftrightarrow a\ge1\)
3) Để biểu thức có nghĩa thì \(a>0\)
4) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a-1\ge0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)
1) Để biểu thức có nghĩa \(\Rightarrow a^2+2a-3\ge0\Rightarrow\left(a-1\right)\left(a+3\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa \(\Rightarrow\dfrac{\left(a-1\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^3\ge0\\a\ne0\end{matrix}\right.\Rightarrow a\ge1\)
3) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a^2+1}{2a}\ge0\Rightarrow2a>0\Rightarrow a>0\)
4) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a-1}{2a+1}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\2a+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)