Tìm số tự nhiên có ba chữ số chia hết cho 7 biết tổng của các chữ số là 14?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abc.theo bài ra ta có:
abc chia hết cho 7
=>100a+10b+c chia hết cho 7
=>98a+7b+c+2a+3b chia hết cho 7
=>2a+3b+c chia hết cho 7
a+b+c=14 chia hết cho 7
=>2a+2b+2c chia hết cho 7
=>2a+3b+c-(2a+2b+2c) chia hết cho 7
=>b-c chia hết cho 7
=>b-c=-7;0;7
xét b-c=7
=>abc=770;581;392
xét b-c=-7
=>abc=707;518;329
xét b-c=0:
=>abc=266;455;644;833
Vậy abc=770;581;392;707;518;329;266;455;644;833
Goi số cần tìm là abc
Theo đề bài: a+b+c=14 (*)
Ta có
abc=100.a+10.b+c=(98a+7b)+(2a+2b+2c)+b-c=(98a+7b)+2.(a+b+c)+b-c=98a+7b+2.14+b-c chia hết cho 7
Ta thấy 98a+7b+28 chia hết cho 7 => b-c chia hết cho 7
+ Nếu b=c xảy ra các trường hợp b=c=3 hoặc b=c=4 hoặc b=c=5 hoặc b=c=6
+ Nếu b>c xảy ra các trường hợp b=7; c=0 hoặc b=8; c=1 hoặc b=9; c=2
+ Nếu b<c xảy ra các trường hợp b=0; c=7 hoặc b=1; c=8 hoặc b=2; c=9
Thay các trường hợp của b và c vào (*) để tìm a. Bạn tự làm nốt nhé
Gọi số cần tìm là abc ( a; b; c là chữ số ; a khác 0)
abc = 100a + 10b + c = (98a + 7b) + (a+ b + c) + (a + 2b)
Theo bài cho abc chia hết cho 7 và a + b + c = 14
Vì 14 chia hết cho 7; 98a + 7b chia hết cho 7 nên a + 2b chia hết cho 7
Mà a + 2b < 10 + 2.10 = 30 => a+ 2b có thể bằng 7; 14; 21; 28
+) Nếu a+ 2b = 7 => a = 1; b = 3 hoặc a = 3 ; b = 2 ; a = 5 ; b = 1; a = 7 ; b = 0 tương ứng c = 10 ; c = 9; c = 8; c = 7
Vì c là chữ số nên loại c = 10
=> abc = 329 hoặc 518; 707
+) Nếu a + 2b = 14 => a + b + b = 14 mà a + b + c = 14 => b = c
a + 2b = 14 => a chẵn mà b là chữ số => a = 2; b = c = 6; a = 4; b = c = 5; a = 6; b = c = 4; a = 8 thì b = c = 3
=> abc = 266; 455; 644; 833
+) Nếu a+ 2b = 21 => a lẻ ; b là chữ số
=> a = 3; b = 9; c = 2; hoặc a = 5; b = 8; c = 1 ; a = 7 ; b = 7; c = 0
=> abc = 392; 581; 770
+) Nếu a+ 2b = 28 => a chẵn ; b là chữ số
=> không có a; b; c thỏa mãn
Vậy............
Gọi số cần tìm là (abc),\(1\le a\le9,o\le b\le9,0\le c\le9,\)
(abc)=100a+10b+c=7*14a+7b+(a+b+c)+(a+2b)
Vì a+b+c chia hết cho 7 và (abc) chia hết cho 7 nên a+2b phải chia hết cho 7.
Lập bảng ta được:
Vậy số cần tìm là: 266, 392, 455, 581, 644, 770, 833 thỏa mãn đề bài