Bài 8: Cho ΔABC vuông tại A có AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh: AEHF là hình chữ nhật và AE.AB =AF.AC
b) Chứng minh: \(AB^2-AC^2=BH^2-CH^2\)
c) Chứng minh: \(\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Chứng minh: \(AH^3=BC.BE.CF\)
e) Chứng minh: \(BH.CH=AE.BE+AF.CF\)
f) Chứng minh: \(BC^2=3AH^2+BE^2+CF^2\)
a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)
\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)
\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)
c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)
\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)
Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)
\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)
\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)
\(\Rightarrow BC.BE.CF=AH^3\)
e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)
f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)
\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)
\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)
\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)
\(=\left(BH+CH\right)^2=BC^2\)