K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

góc BAC=90 độ

vì ads dụng định li pi-ta-go

**** cho mk nha

9 tháng 8 2015

Ta có:

   BC2 = AB2 + AC2      (132 = 122 + 52)

=> góc BAC = 900 (để tam giác ABC vuông tại A)  

(Dựa theo đinh lí Pi - ta - go để giải ! )

1 tháng 12 2021

Câu 4:

\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)

25 tháng 2 2021

rorry mình lười giải

21 tháng 4 2020

a) Ta có : AB2AB2 = 5252 = 25 

AC2AC2 = 122122= 144 

⇒⇒ AB2+AC2AB2+AC2 = 25 +144 = 169    *1* 

Mà BC2BC2 = 132132 = 169    *2* 

Từ *1* và *2* suy ra AB2+AC2AB2+AC2 = BC2BC2 

Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông tại A. 

b) Theo đề bài ta có : AB < AC < BC (  5 < 12 < 13 ) nên 

⇒⇒ ˆCC^ < ˆBB^ < ˆAA^ ( quan hệ giữa góc và cạnh trong một tam giác

21 tháng 4 2020

A B C

a, có \(AB^2=5^2=25\)

\(AC^2=12^2=144\)

\(\Rightarrow AB^2+AC^2=25+144=169\left(1\right)\)

\(BC^2=13^2=169^2\left(2\right)\)

Từ 1 và 2 \(\Rightarrow AB^2+AC^2=BC^2\)

Dựa vào định lí  py - ta - go đảo ta có \(\Delta ABC\)là tam giác vuông tại A

b, như đề bài ta có :

\(AB< AC< BC\)hay \(5< 12< 13\)

\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(Dựa vào quan hệ giữa góc và cạnh trong 1 tam giác )

Chúc bạn học tốt !

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)