cho tam giác ABC có AB=5cm , AC=12cm,BC=13cm.
tính góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
a) Ta có : AB2AB2 = 5252 = 25
AC2AC2 = 122122= 144
⇒⇒ AB2+AC2AB2+AC2 = 25 +144 = 169 *1*
Mà BC2BC2 = 132132 = 169 *2*
Từ *1* và *2* suy ra AB2+AC2AB2+AC2 = BC2BC2
Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông tại A.
b) Theo đề bài ta có : AB < AC < BC ( 5 < 12 < 13 ) nên
⇒⇒ ˆCC^ < ˆBB^ < ˆAA^ ( quan hệ giữa góc và cạnh trong một tam giác
a, có \(AB^2=5^2=25\)
\(AC^2=12^2=144\)
\(\Rightarrow AB^2+AC^2=25+144=169\left(1\right)\)
\(BC^2=13^2=169^2\left(2\right)\)
Từ 1 và 2 \(\Rightarrow AB^2+AC^2=BC^2\)
Dựa vào định lí py - ta - go đảo ta có \(\Delta ABC\)là tam giác vuông tại A
b, như đề bài ta có :
\(AB< AC< BC\)hay \(5< 12< 13\)
\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(Dựa vào quan hệ giữa góc và cạnh trong 1 tam giác )
Chúc bạn học tốt !
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
góc BAC=90 độ
vì ads dụng định li pi-ta-go
**** cho mk nha
Ta có:
BC2 = AB2 + AC2 (132 = 122 + 52)
=> góc BAC = 900 (để tam giác ABC vuông tại A)
(Dựa theo đinh lí Pi - ta - go để giải ! )