Tính:
\(\frac{1}{3.10}+\frac{1}{3.17}+\frac{1}{17.24}+...+\frac{1}{73.80}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16.23}-\frac{1}{23.30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P=\(\frac{1}{3.10}\)+\(\frac{1}{10.17}\)+\(\frac{1}{17.24}\)+......+\(\frac{1}{73.80}\)-\(\frac{1}{2.9}\)-\(\frac{1}{9.16}\)-\(\frac{1}{16.23}\)-\(\frac{1}{23.30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{7}{3.10}\)+\(\frac{7}{10.17}\)+\(\frac{7}{17.24}\)+......\(\frac{7}{73.80}\)-\(\frac{7}{2.9}\)-\(\frac{7}{9.16}\)-\(\frac{7}{16.23}\)-\(\frac{7}{23.30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{10}\)+\(\frac{1}{10}\)-\(\frac{1}{17}\)+.....+\(\frac{1}{73}\)-\(\frac{1}{80}\)-\(\frac{1}{2}\)-\(\frac{1}{9}\)-......-\(\frac{1}{23}\)-\(\frac{1}{30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{80}\))-\(\frac{1}{7}\)(\(\frac{1}{2}\)-\(\frac{1}{30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{80}\)-\(\frac{1}{2}\)+\(\frac{1}{30}\))
P=\(\frac{-7}{336}\)
Bài này mk ko tính máy tính nên ko chắc đâu
taị mk ko tính máy tính lên sai.
bn thông cảm nha. thường ngày hay dùng máy tính quá nên tính sai thì bn thông cảm
\(A=\frac{1}{3\cdot10}+\frac{1}{10\cdot17}+\frac{1}{17\cdot24}+...+\frac{1}{73\cdot80}-\frac{1}{2\cdot9}-\frac{1}{9\cdot16}-\frac{1}{16\cdot23}-\frac{1}{23\cdot30}\)
\(A=\frac{1}{7}\left(\frac{7}{3\cdot10}+\frac{7}{10\cdot17}+\frac{7}{17\cdot24}+...+\frac{7}{73\cdot80}-\frac{7}{2\cdot9}-\frac{7}{9\cdot16}-\frac{7}{16\cdot23}-\frac{7}{23\cdot30}\right)\)
\(A=\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{73}-\frac{1}{80}-\frac{1}{2}+\frac{1}{9}-\frac{1}{9}+\frac{1}{16}-...-\frac{1}{23}-\frac{1}{30}\right)\)
\(A=\frac{1}{7}\left(\frac{1}{3}-\frac{1}{80}-\frac{1}{2}-\frac{1}{30}\right)\)
1/3.10+1/10.17+......+1/73.80 - 1/2.9 - 1/9.16 - 1/16.23 - 1/23.30
= (7/3.10+7/10.17+......+7/73.80) : 7 - (7/2.9 + 7/9.16 + 7/16.23 + 7/23.30) : 7
= (1/3-1/10+1/10-1/17+...+1/73-1/80) : 7 - (1/2-1/9+1/9-1/16+1/16-1/23+1/23-1/30) : 7
=(1/3-1/80) : 7 - (1/2-1/30) : 7
= 77/240 : 7 - 7/15 : 7
=11/240 - 1/15
= -1/48
Nhấn đúng cho mk nha!!!!!!!!!!!!!
Đặt biểu thức cần tính là A, ta có:
A=\(\dfrac{1}{7}\left(\dfrac{7}{3.10}+\dfrac{7}{10.17}+...+\dfrac{7}{73.80}\right)\)
Làm tg tự với những cái khác là ok
Đặt \(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+\frac{7^2}{23.30}\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=\frac{49}{15}\)
đặt biểu thức là B
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(B=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.....+\frac{1}{23}-\frac{1}{30}\right)\)
\(B=7.\left(\frac{1}{2}-\frac{1}{30}\right)=7.\frac{7}{15}=\frac{49}{15}\)
Ai thấy đúng thì ủng hộ nha !!!
A = 7 (7 / 2.9 + 7 / 9.16 + .......... + 7/65.72)
A=7( 1/2 - 1/9 +1/9 - 1/16 +......+1/65 - 1/72)
A= 7 ( 1/2 -1/72)
A= 7 . 35/72
A=245/72
\(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7}{16.23}+.....+\frac{7^2}{65.72}\)
=\(7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{65}-\frac{1}{72}\right)\)
=\(7.\left(\frac{1}{2}-\frac{1}{72}\right)\)
=\(7.\frac{35}{72}\)
=\(\frac{245}{72}\)
Nếu phân số thứ 2 là \(\frac{1}{10.17}\) thì làm như vậy nè
\(\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{73.80}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16.23}-\frac{1}{23.30}\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{73}-\frac{1}{80}\right)-\left(\frac{1}{2.9}+\frac{1}{9.16}+\frac{1}{16.23}+\frac{1}{23.30}\right)\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{80}\right)-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
= \(\frac{1}{7}.\frac{77}{240}-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{30}\right)=\frac{1}{7}.\frac{77}{240}-\frac{1}{7}.\frac{7}{15}\)
= \(\frac{11}{240}-\frac{1}{15}\)
= \(-\frac{1}{48}\)
Hồ Thu Giang nói đúng đấy