K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

a, \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy ...

b, ĐKXĐ : \(x\ge-1\)

\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=-\dfrac{5}{3}\)

Vậy phương trình vô nghiệm

4 tháng 7 2021

a)Pt \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy...

b)Đk:\(x\ge-1\)

Pt\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow-3\sqrt{x+1}=5\) (vô nghiệm)

Vậy...

a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)

\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)

\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)

\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)

\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)

\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)

\(\Leftrightarrow30\sqrt{x-3}=7x+18\)

\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)

\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)

\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)

Vậy: Phương trình vô nghiệm

6 tháng 7 2021

a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b)Đk:\(x\ge-1\)

Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)

Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=5\)

\(\Leftrightarrow x=24\left(tm\right)\)

7 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(3-2x\ge0\)

\(\Rightarrow x\le\dfrac{3}{2}\)

Vậy ...

b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)

\(\Rightarrow2x+1< 0\)

\(\Rightarrow x< -\dfrac{1}{2}\)

Vậy ...

7 tháng 7 2021

a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)

b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)

( bây giờ mình bận nên làm trước 2 bài =))

 

18 tháng 10 2021

a: Ta có: \(\sqrt{4-3x}=8\)

\(\Leftrightarrow4-3x=64\)

\(\Leftrightarrow3x=-60\)

hay x=-20

b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)

\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)

\(\Leftrightarrow x-2=\dfrac{1}{4}\)

hay \(x=\dfrac{9}{4}\)

18 tháng 10 2021

\(\left\{{}\begin{matrix}8>0\left(luondung\right)\\4-3x=64\end{matrix}\right.\) \(\Leftrightarrow x=-20\left(ktm\right)\)

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm