cho 2 số hữu tỷ a/b và c/d ( b;d >0 ) biết a/b < c/d , CMR a/b < a+c/b+d < c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+b và a-b là số hữu tỉ
suy ra (a+b) + (a-b) = 2a là số hữu tỉ
Suy ra a là số hữu tỉ
Tương tự , b cũng là số hữu tỉ
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) (do a+b+c = 0)
=> \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
=> đpcm
ta có :
a. \(a=\frac{\left(a+b\right)+\left(a-b\right)}{2}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
b. \(a=\frac{2\left(2a+b\right)+\left(3a-2b\right)}{7}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
ta có
a\b < c\d
ad<bc
ad + ab < bc+ab
a( d + b) < b( c+a)
a\b< a+c\b+ d (1)
a\b < c\d
ad < bc
ad + cd < bc + cd
d ( a+c) < c( b+ d )
a+c\b+d < c\d (2)
từ (1) và (2) suy ra
a\b < a+c\b+d < c\d