Tính nhanh: A=4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1+1+1+1+1+1+1+1)+(1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45)
Đặt A = 1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Ta có:
A x 1/2= 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6=1/2x3=1/2-1/3
1/12=1/3x4=1/3-1/4
……………………
1/90=1/9x10=1/9-1/10
A x 1/2=1/2-1/3+1/3-1/4+1/4-1/5+…+1/9-1/10
A x 1/2=1/2-1/10=4/10
A=4/10:1/2=4/5
Vậy 4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45=1+1+1+1+1+1+1+1+4/5=8+4/5=44/5
\(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+...+\frac{46}{45}\)
\(=1+\frac{1}{3}+1+\frac{1}{6}+1+\frac{1}{10}+...+1+\frac{1}{45}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)(8 chữ số 1)
\(=8+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
Đặt A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Vậy A = \(\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
Do đó biểu thức trên là 8 + \(\frac{4}{5}\) = \(\frac{44}{5}\)
Đáp số: \(\frac{44}{5}\)
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+49+50=1275
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37
=(1+37)x37:2
=703
A=4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) + - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )
A = 8 + 4/5
A = 44/5
A = 4/3 + 7/6 + 11/10 + 16/15 + 22/21 + 29/28 + 37/36 + 46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + ... + 1 ) - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )