K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

Vì X tác dụng với AgNO3/NH3 thu được kết tủa

=> CT este thứ nhất của X : HCOOR

\(n_{Ag}=\dfrac{43,2}{108}=0,4\left(mol\right)\)

=>\(n_{HCOOR}=0,2\left(mol\right)\)

=> neste 2 = 0,3 (mol)

\(\Rightarrow\dfrac{n_{este1}}{n_{este2}}=\dfrac{0,2}{0,3}=\dfrac{2}{3}\)

- 14,08 g X + KOH → 2 muối của 2 axit đồng đẳng kế tiếp

=> 2 muối đó là HCOOK (2x mol) và CH3COOK (3x mol)

=> nKOH = 5x mol

- Bảo toàn khối lượng ta có:

mX + 56nKOH = 84nHCOOK + 98nCH3COOK + m ancol

<=> 14,08 + 56.5x = 84.2x + 98.3x + 8,256

=> x = 0,032 mol

=> \(n_{ancol}=n_{este}=5x=0,16\) (mol)

\(M_{ancol}=\dfrac{8,256}{0,16}=51,6\)

Ta có ancol no, đơn chức : CnH2n+1OH

=> \(\overline{n}=2,36\)

=> 2 ancol là C2H5OH và C3H7OH

Ta có khối lượng của 2 este là 14,08

neste 1=  0,064 mol  và neste 2 = 0,096 mol

=> 2 este cần tìm là HCOOC3H7 và CH3COOC2H5

 

Câu 3:

2: Xét tứ giác OKEH có 

\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)

Do đó: OKEH là hình chữ nhật

mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)

nên OKEH là hình vuông

17 tháng 2 2021

Do M là điểm chính giữa của cung AB \(\Rightarrow MA=MB\)  (1)

Ta có \(\Lambda MAN=\Lambda MAB=\dfrac{1}{2}sđcungMB\) (\(\Lambda\) kí hiệu góc)

\(\Lambda MBC=\dfrac{1}{2}sđcungMB\) \(\Rightarrow\Lambda MAN=\Lambda MBC\)(2)

\(\Lambda AMN\) là góc chắn đường kính AB \(\Rightarrow\Lambda AMB=90^0\Rightarrow\Lambda AMN+\Lambda NMB=90^0\) 

\(\Lambda NMC=90^0\Rightarrow\Lambda NMB+\Lambda BMC=90^0\) \(\Rightarrow\Lambda AMN=\Lambda BMC\)(3)

 

Từ (1) ,(2) và (3) \(\Rightarrow\Delta AMN=\Delta BMC\left(g.c.g\right)\)

13 tháng 8 2021

18.\(\)\(=>I1=\dfrac{U}{R1}=\dfrac{16}{4R2}=\dfrac{4}{R2}A,\)

\(=>I2=\dfrac{U}{R2}=\dfrac{16}{R2}\left(A\right)\)

\(=>I2=I1+6< =>\dfrac{16}{R2}=\dfrac{4}{R2}+6< =>R2=2\left(ôm\right)\)

\(=>I1=\dfrac{4}{2}=2A,=>I2=2+6=8A\)

\(=>R1=4R2=8\left(ôm\right)\)

19

\(I2=1,5I1< =>\dfrac{U}{R2}=\dfrac{1,5U}{R1}=>\dfrac{1}{R2}=\dfrac{1,5}{R1}\)

\(< =>\dfrac{1}{R2}=\dfrac{1,5}{R2+5}=>R2=10\left(ôm\right)=>R1=R2+5=15\left(ôm\right)\)

 

 

17 tháng 1 2023

\(c,\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{1}{y+1}=3\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2}+\dfrac{2}{y+1}=6\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{y+1}+\dfrac{3}{y+1}=5\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y+1}=5\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=1\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\left(2\right)\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\left(1\right)\end{matrix}\right.\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) :

\(\dfrac{4}{x-2}-\dfrac{3}{0+1}=1\)

\(\Rightarrow\dfrac{4}{x-2}-3=1\)

\(\Rightarrow\dfrac{4}{x-2}=4\)

\(\Rightarrow x-2=1\)

\(\Rightarrow x=3\)

Vậy hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(3;0\right)\)

 

 

c: =>4/x-2+2/y+1=6 và 4/x-2-3/y+1=1

=>5/y+1=5 và 2/x-2+1/y+1=3

=>y+1=1 và 2/x-2+1=3

=>y=0 và x-2=1

=>x=3 và y=0

Câu 1: 

const fi='dulieu.dat';

fo='thaythe.out';

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Câu 2: 

uses crt;

const fi='mang.inp';

fo='sapxep.out';

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.