K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

Thay x = 7 vào p, ta đc:

\(p=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{7+5}}}}\)

     \(=3^{2^{1^{13^{12}}}}=9\)

22 tháng 6 2015

thay x = 7  vào biểu thức, ta đc:

\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}=3^{2^{1^{13^{12}}}}\)

\(=3^{2^1}=9\)

22 tháng 6 2015

\(\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}=\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}=1^{13^{12}}=1\)

=> P(1) = \(\left(7-4\right)^{\left(7-5\right)^1}=3^2=9\)

5 tháng 4 2017

Ta có x-6=7-6=1

=>A=(x-4)(x-5)=(7-4)(7-5)=32=9

Vậy giá trị của A tại x=7 là 9

9 tháng 2 2020

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

9 tháng 2 2020

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)

8 tháng 12 2017

x = 7 => x - 6 = 1

=> \(\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}=1^{\left(x+6\right)^{\left(x+5\right)}}=1\)

\(\Rightarrow P=\left(x-4\right)^{\left(x-5\right)^1}=\left(7-4\right)^{\left(7-5\right)}=3^2=9\)

21 tháng 7 2015

Thay x=7 vào biểu thức, ta được:

P=(7-4)^(7-5)^(7-6)^(7+6)^(7+5)=3^2^1^13^12=3^2^1=3^2=9

3 tháng 6 2019

Bài 2:

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)

\(=\frac{1}{2004}\)

3 tháng 6 2019

Bài 2

=1/2 x 2/3 ... x 2003/2004

=1/2004

3 tháng 8 2018

a, \(P=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\cdot\left(x+6\right)^{\left(x+5\right)}}}}\)

Thay x = 7 ta được:

\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)

\(P=3^{2^{1^{13^{12}}}}=3^2.1^{13^{12}}=9.1=9\)

b, Vì \(x-1=x-1\) nên lũy thừa của nó phải giống nhau

\(x+2\ne x+4\)

\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\) có nghiệm \(\Leftrightarrow\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)