K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2014

a/ Theo t/c đường phân giác ta có : \(\frac{DA}{DC}=\frac{AB}{BC}=\frac{2}{3}\)

Trong tam giác vuông ABC có : sin C = \(\frac{AB}{BC}=\frac{2}{3}\)Từ đó tính đc góc C, góc B

Biết góc B, góc C tính được AB, BC

b/ Dùng các hệ thức tam giác vuông tính đc AH, BH, CH

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

b: AH=6*8/10=4,8cm

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

25 tháng 2 2018

Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25 

=> AH = AB.AC/BC = 20.15/25 = 12 

Do tính chất phân giác, ta có: 
HD/DB = AH/AB= 12/15=4/5 

=> HD/DB =4/5 
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9 

Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81 
=> HB=9 => HD = 4 ( cm )

Tương tự ta cũng có:
Do tính chất phân giác, ta có: 
HE/EC = AH/AC= 12/20=3/5 

=> HE/EC =3/5 
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8 

Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256 
=> HC=16 => HE = 6 ( cm )

Vậy HD = 4 ( cm ) và HE = 6 ( cm )

6 tháng 4 2018

Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25 

=> AH = AB.AC/BC = 20.15/25 = 12 

Do tính chất phân giác, ta có: 
HD/DB = AH/AB= 12/15=4/5 

=> HD/DB =4/5 
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9 

Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81 
=> HB=9 => HD = 4 

==================== 

Tương tự 
Do tính chất phân giác, ta có: 
HE/EC = AH/AC= 12/20=3/5 

=> HE/EC =3/5 
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8 

Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256 
=> HC=16 => HE = 6

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Lời giải:

a) 

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)

b) 

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$

$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$

$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$

$\Rightarrow AD=15$ (cm)

$DC=AC-AD=40-15=25$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Hình vẽ:

21 tháng 7 2017

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A, ta được:

B C 2 = A C + A B 2 ⇒ B C 2 = 15 2 + 20 2 ⇔ B C 2 = 25 2  ⇔ BC = 25( cm )

Đặt BD = x ⇒ DC = 25 - x

Áp dụng định lý Py 0 ta – go vào hai tam giác vuông AHB và AHC, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Trừ theo vế các đẳng thức ( 1 ) và ( 2 ) ta được:

15 2 - x 2 - 20 2 + ( 25 - x ) 2 = 0  ⇔ 50x = 450 ⇔ x = 9( cm )

Nên HC = 25 - 9 = 16( cm )

Thay x = 9 vào đẳng thức ( 1 ) ta có:  H A 2 = 15 2 - 9 2 = 122 ⇔ HA = 12( cm )

Áp dụng tính chất đường phân giác AD vào tam giác AHB, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường chất đường phân giác AE của tam giác ACH, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án