Cho tam giác ABC co AB = 6cm, AC = 8cm, các đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trong tâm
GE = x => CG =2x ; GD =y =>BG =2y
=> pi ta go
\(\int^{x^2+4y^2=16}_{y^2+4x^2=9}\Leftrightarrow5\left(x^2+y^2\right)=25\Leftrightarrow4x^2+4y^2=\frac{5}{4}=BC^2\Leftrightarrow BC=\frac{\sqrt{5}}{2}\)
Tham khảo:
Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có:
CI/CE = 2/3
hay CI/12 = 2/3
<=> CI = 2/3.12
<=> CI = 8 cm
Tương tự, ta có:
BI/BD = 2/3
hay BI/9 = 2/3
<=> BI = 2/3.9
<=> BI = 6 cm
t.g BIC vuông tại I nên:
BC^2 = IC^2 + BI^2
<=> BC^2 = 8^2 + 6^2
<=> BC^2 = 100
<=> BC = 10 cm
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.
Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE
Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.
Xét tam giác BGC vuông tại G.
Ta có: BC2 = BG2 + CG2 (định lý Pytago)
=> BC2 = 62 + 82
=> BC2 = 100
=> BC = \(\sqrt{100}\) = 10 cm
Vậy BC = 10 cm.
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
câu này mình ko bt làm
la me may do