Một cano xuôi dòng từ A đến B cách nhau 40 km sau đó sau đó đi ngược dòng từ A về B. Tính vận tốc riêng của cano. Biết thời gian xuôi ít hơn thời gian ngược là 20 phút, vận tốc dòng nước là 3 km/h và vận tốc riêng của cano không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi khoảng cách AB là x
Vận tốc thực ko đổi
=>Vận tốc từ B về A là 30km/h
Theo đề, ta có: x/33+x/27=2/3
=>x=99/10
Gọi khoảng cách giữa A và B là \(x\left(km\right)\)
Khi đó bạn sẽ có 2 phương trình theo đề bài:
Thời gian khi xuôi dòng từ A đến B là: \(t_1=\dfrac{x}{\left(30+3\right)}\)
Thời gian khi ngược dòng từ B về A là: \(t_2=\dfrac{x}{\left(30-3\right)}\)
Mà thời gian khi xuôi dòng ít hơn thời gian khi ngược dòng là \(\dfrac{2}{3}\) giờ
\(t_1+\dfrac{2}{3}=t_2\)
\(\Leftrightarrow\dfrac{x}{\left(30+3\right)}+\dfrac{2}{3}=\dfrac{x}{\left(30-3\right)}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{2}{3}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x+22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow27\left(x+22\right)=33x\)
\(\Leftrightarrow27x+594=33x\)
\(\Leftrightarrow594=33x-27x=6x\)
\(\Leftrightarrow x=\dfrac{594}{6}=99\left(km\right)\)
Vậy quãng đường AB có độ dài 99km
Gọi độ dài AB là a
Thời gian đi là a/33
Thời gian về là a/27
Theo đề, ta co: a/27-a/33=2/3
=>a=99
Gọi vận tóc riêng của cano là x(km/h, x lớn hơn 0)
-> vận tốc ca nô khi xuôi dòng là: x+4(km/h)
vận tốc cano ngược dòng là: x-4(km/h)
Thời gian cano xuôi dòng là: 120/x+4(h)
Thời gian cano ngược dòng là: 120/x-4(h)
Vì thời gian ca-nô xuôi dòng ít hơn thời gian ngược dòng là 45 phút= \(\dfrac{3}{4}\) h nên
120/x-4 - 120/x+4 = \(\dfrac{3}{4}\)
⇒ x=\(\sqrt{4032}\)
-Gọi khoảng cách giữa bến A và bến B là x (km) (x>0).
-Vận tốc của ca nô ngược dòng là: \(36-3-3=30\) (km/h).
-Thời gian đi xuôi là: \(\dfrac{x}{36}\left(h\right)\)
-Thời gian đi ngược là: \(\dfrac{x}{30}\left(h\right)\)
-Theo đề bài ta có phương trình sau:
\(\dfrac{x}{30}-\dfrac{x}{36}=\dfrac{2}{3}\)
\(\Leftrightarrow x\left(\dfrac{1}{30}-\dfrac{1}{36}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow x.\dfrac{1}{180}=\dfrac{2}{3}\)
\(\Leftrightarrow x=120\left(nhận\right)\)
-Vậy khoảng cách giữa bến A và bến B là 120 km.
Lời giải:
Đổi $20'=\frac{1}{3}$ h
Gọi vận tốc riêng của cano là $a$ (km/h). ĐK $a>6$.
Vận tốc xuôi dòng: $a+6$ km/h
Vận tốc ngược dòng: $a-6$ km/h
Theo bài ra ta có:
$\frac{AB}{a-6}-\frac{AB}{a+6}=\frac{1}{3}$$\Leftrightarrow \frac{60}{a-6}-\frac{60}{a+6}=\frac{1}{3}$
$\Leftrightarrow a^2-36=2160$
$\Leftrightarrow a^2=2196$
$\Rightarrow a=6\sqrt{61}$ (km/h)
Gọi vận tốc riêng của ca nô là x ( km/h , x > 3 )
Vận tốc ca nô khi xuôi dòng = x + 3
Vận tốc ca nô khi ngược dòng = x - 3
=> Thời gian ca nô đi khi xuôi dòng = 40/x+3
Thời gian ca nô đi khi ngược dòng = 40/x-3
Thời gian xuôi dòng ít hơn thời gian ngược dòng 20 phút = 1/3 giờ
=> Ta có phương trình : \(\frac{40}{x-3}-\frac{40}{x+3}=\frac{1}{3}\)
<=> \(\frac{3\cdot40\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{3\cdot40\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{\left(x-3\right)\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}\)
<=> \(120x+360-120x+360=\left(x-3\right)\left(x+3\right)\)
<=> \(720=\left(x-3\right)\left(x+3\right)\)
<=> \(720=x^2-9\)
<=> \(x^2=729\)
<=> \(x=\pm\sqrt{729}=\pm27\)
Vì x > 0 => x = 27
Vậy vận tốc riêng của ca nô = 27km/h
gọi vận tốc riêng ca nô là x(km/h)(x>3)
đổi \(20'=\dfrac{1}{3}h\)
thời gian xuôi dòng \(\dfrac{40}{x+3}\left(h\right)\)
thời gian ngược dòng \(\dfrac{40}{x-3}\left(h\right)\)
\(=>\dfrac{40}{x-3}-\dfrac{40}{x+3}=\dfrac{1}{3}=>\left\{{}\begin{matrix}x1=x=27\left(tm\right)\\x2=x=-27\left(loai\right)\end{matrix}\right.\)
Tham khảo :(tại mk hơi lười)