K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 7 2021

\(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(2B=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}+\frac{1}{\left(2n\right)^2}\)

\(< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n-1\right)^2}+\frac{1}{\left(2n\right)^2}\)

\(< \frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{\left(2n-2\right)\left(2n-1\right)}+\frac{1}{\left(2n-1\right)2n}\)

\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2n-1}-\frac{1}{2n}\)

\(=1-\frac{1}{2n}< 1\)

Suy ra \(B< \frac{1}{2}\).

2 tháng 6 2017

a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

 \(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

Vậy \(N< \frac{1}{4}\)

b)  \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)

\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)

Vậy \(P< 1\)

2 tháng 6 2017

P<1 nha bn k nha

2 tháng 7 2021

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

          \(\frac{1}{4^2}< \frac{1}{3.4}\)

           ...

           \(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\) (vì \(n\ge2\))

Vậy \(A< 1\).

2 tháng 1 2016

A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4

A=1/4^2+1/6^2+...+1/(2n)^2

=1/4(1/2^2+1/3^2+...+1/n^2)

=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)

=>A<1/4(1-1/n)<1/4

15 tháng 4 2019

nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho

ui soi phút rươi là song