Cho tam giác ABC .Gọi D,E,F lần lượt là trung điểm của BC ,CA và AB . Chứng minh rằng đường tròn (AFE),(BFD),(CDE) bằng nhau và cùng đi qua một điểm .Xác định điểm chung đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh IFEK là hình bình hành có tâm O. Chứng minh IK ⊥ KE => IFEKlà hình chữ nhật => I,F,E,K cùng thuộc (O;OI)
b, Ta có: I D E ^ = 90 0 => Tam giác IDE vuông tại D
Chứng minh rằng KD ⊥ DF => ∆ KDF vuông
Dễ thấy P là điểm chính giữa nên D,N,P thẳng hàng
Cần chứng minh
Ta có :
b) Theo câu a suy ra
Mà cân tại I ( do IP = ID ) nên
Suy ra
c) từ câu b ( 1 )
Theo hệ thức lượng, ta có :
Do đó :
Suy ra ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với IM // PN suy ra A,M,N thẳng hàng
a) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh BC(gt)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
Xét tứ giác ABED có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
nên ABED là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,B,E,D cùng thuộc (O)
b) Xét tứ giác HDCE có
\(\widehat{HEC}+\widehat{HDC}=180^0\)
nên HDCE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác HDCE là trung điểm của HC
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Trong (O) có BC là dây cung không đi qua O có D là trung điểm BC
\(\Rightarrow OD\bot BC\)
Tương tự \(\Rightarrow\left\{{}\begin{matrix}OE\bot AC\\OF\bot AB\end{matrix}\right.\)
Ta có: \(\angle ODB+\angle OFB=90+90=180\Rightarrow OFBD\) nội tiếp
Tương tự \(\Rightarrow OECD,OEAF\) nội tiếp
\(\Rightarrow\left(AFE\right),\left(BFD\right),\left(CDE\right)\) cùng đi qua điểm O là tâm đường tròn ngoại tiếp tam giác ABC
Xét \(\Delta ABC\) có E,F lần lượt là trung điểm AC,AB
\(\Rightarrow\) EF là đường trung bình \(\Rightarrow EF=\dfrac{1}{2}BC\)
Tương tự \(\Rightarrow\left\{{}\begin{matrix}DF=\dfrac{1}{2}AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)
Xét \(\Delta AFE\) và \(\Delta FBD:\) Ta có: \(\left\{{}\begin{matrix}AF=BF\\AE=FD=\dfrac{1}{2}AC\\FE=BD=\dfrac{1}{2}BC\end{matrix}\right.\)
\(\Rightarrow\Delta AFE=\Delta FBD\left(c-c-c\right)\Rightarrow\left(AFE\right)=\left(FBD\right)\)
Tương tự \(\Rightarrow\left(CDE\right)=\left(AFE\right)\Rightarrow\left(AFE\right)=\left(FBD\right)=\left(CDE\right)\)
thanks