Có 1000 mảnh bìa hình chữ nhật, trên mỗi mảnh được ghi một trong các số từ 1 đến 1001 (không có mảnh nào ghi khác nhau). Chứng minh rằng không thể ghép tất cả các mảnh bìa đó liền nhau để được một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương. hi hi tick nhé
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Ta có : \(333^{333}=\left(333^4\right)^{83}\cdot333=\left(...1\right)^{83}\cdot333=\left(...1\right)\cdot333=\left(...3\right)\)
\(555^{555}=\left(...5\right)\)
\(777^{777}=\left(777^4\right)^{194}\cdot777=\left(...1\right)^{194}\cdot777=\left(...1\right)\cdot777=\left(...7\right)\)
Để mình giải giúp bạn nha!!!
Hình như bạn vừa trả lời câu này thì phải: http://vn.answers.yahoo.com/question/ind...
Cũng tương tự như mình vừa chứng minh câu trên.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Ta ghép mảnh bìa 1 và hai thì được số 1256
mảnh bìa số 1 và mảnh bìa số 3 được số \(\overline{12ab}\)
mảnh bìa số 2 và mảnh bìa số 3 được số \(\overline{56ab}\)
Theo bài ra ta có :
\(\left(1256+5612+\overline{12ab}+\overline{ab12}+\overline{56ab}+\overline{ab56}\right)\div6=3434\)
\(6868+\overline{12ab}+\overline{ab12}+\overline{56ab}+\overline{ab56}=3434\times6\)
\(6868+\overline{12ab}+\overline{ab12}+\overline{56ab}+\overline{ab56}=20604\)
\(1200+\overline{ab}+\overline{ab00}+56+\overline{ab00}+12+5600+\overline{ab}=20604-6868\)
\(\left(1200+12+5600+56\right)+\left(\overline{ab00}+\overline{ab}+\overline{ab00}+\overline{ab}\right)=13736\)
\(6868+\overline{abab}\times2=13736\)
\(\overline{abab}\times2=13736-6868\)
\(\overline{abab}\times2=6868\)
\(\overline{abab}=6868\div2\)
\(\overline{abab}=3434\)
\(\Rightarrow\overline{ab}=34\)
Vậy số \(\overline{ab}\)cần tìm là :34
Vậy ta có 6 cách để làm thành số có 6 chữ số
*Gọi số cần tìm là x
Theo thứ tự:
1: x- 23- 79
2: x-79-23
3:79-x-23
4: 23-x-79
5: 23-79-x
6: 79-23-x
Mà tổng tất cả là 2989896
Điều kiện:
-dù đổi vị trí ở đâu nhưng giá trị của tổng các chữ số đều bằng nhau
( tổng các chữ số ở 1, 2, 3, 4, 5, 6 đều bằng nhau)
- Tổng tất cả các số là 28989896
=>(23 + 79 +x)x2
Nhờ đó ta sẽ có tổng như sau:
[(23+79+x)x2].10000+[(23+79+x)x2].100+[(23+79+x)x2]=[(23+79+x)x2].20202
= 23+79+x=2989896 : 20202 = 148
= >x=148 - 23 - 79
= 46
ĐS: x = 46
Vì hơi khó hiểu nên mik sẽ giải thích
khi ghép lại ta sẽ có 1 số có 6 chữ số vì vậy có hàng chục nghìn, hàng nghìn, hàng trăm, hàng chục và hàng đơn vị từ đó tính như những j mik đã trình bày trên.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
nguyễn hoàng vũ chép trên mạng