Phân tích thành nhân tử A)X²-y²-2x+2y; B)2x+2y-x²-xy; C)x²-25+y²+2xy; D)3x²-6xy+3y²-12z² E)x²+2xy+y²-xz-yz F)X²-2x-4y²-4y. Giúp mk giải chi tiết nhất nha.TKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a,\(A=x^3-2x^2=x^2\left(x-2\right)\)
\(b,\) \(y^2+2y-x^2+1=-x^2-xy-x+xy+y^2+y+x+y+1\)
\(=-x\left(x+y+1\right)+y\left(x+y+1\right)+\left(x+y+1\right)\)
\(=\left(-x+y+1\right)\left(x+y+1\right)\)
\(c,\) \(\left(x+1\right)^2-25=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
c: \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
a)
\(2x^2y-8xy^2\\ =2xy\left(x-4y\right)\)
b)
\(x^2-2xy+y^2-16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y-4\right)\left(x-y+4\right)\)
a, \(x^3+2x^2+x-xy=x\left(x^2+2x+1-y\right)\)
\(=x\left[\left(x+1\right)^2-y\right]\)
b, \(x^3-y^3+2x^2-2y^2=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+2\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)