Chứng minh rằng ba đơn thức :-1/3x^4y^3;-3/5x^3y^4 và 1/2xy^3 không thể cùng nhận giá trị âm tại cùng các giá trị nào đó của x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3x^2y^4>0\forall x,y\) nên ta không xét.
-Khi x,y dương (hoặc x,y âm) thì A âm, C dương.
-Khi x dương, y âm (hoặc x âm, y dương) thì A dương, C âm.
-Vậy 3 đơn thức A,B,C ko thể có cùng giá trị dương.
Lời giải:
Nhân 3 đơn thức với nhau ta có:
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=(\frac{-1}{4}.\frac{-4}{5}.\frac{1}{2})x^{3+4+1}.y^{4+3+1}\)
\(=\frac{1}{10}.x^8y^8\)
Ta thấy $x^8,y^8\geq 0, \forall x,y$ nên $\frac{1}{10}x^8y^8$ luôn không âm, hay tích 3 đơn thức luôn không âm.
Nếu tồn tại giá trị $x,y$ để 3 đơn thức cùng có giá trị âm thì tích của nó nhận giá trị âm (vô lý- đã chứng minh trên)
Do đó ta có đpcm.
Lời giải:
Nhân 3 đơn thức với nhau ta có:
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=(\frac{-1}{4}.\frac{-4}{5}.\frac{1}{2})x^{3+4+1}.y^{4+3+1}\)
\(=\frac{1}{10}.x^8y^8\)
Ta thấy $x^8,y^8\geq 0, \forall x,y$ nên $\frac{1}{10}x^8y^8$ luôn không âm, hay tích 3 đơn thức luôn không âm.
Nếu tồn tại giá trị $x,y$ để 3 đơn thức cùng có giá trị âm thì tích của nó nhận giá trị âm (vô lý- đã chứng minh trên)
Do đó ta có đpcm.
Ta có :
A+B+C = ( 3x - 2y2 -2y) + ( 2z - x2 -4y ) + ( 4y - 5z2 - 3x )
= -2y2 - x2 - 5z2 ( đoạn này mk làm tắt nhá )
= - 2y2 + ( -x2) + ( -5z2 )
= -( 2y2 + x2 + 5z2 ) < 0
vì x, y , z \(\ne\)0 nên \(\hept{\begin{cases}2y^2>0\\x^2>0\\5z^2>0\end{cases}}\)
=> 2y2 + x2 + 5z2 >0
=> - ( 2y2 + x2 + 5z2 ) <0
nên A+B+C <0
Tổng 3 đa thức trên <0 . Vậy trong 3 đa thức trên phải có ít nhất 1 đa thức có g.trị âm
1)
xét tích :
-3x4y . 5x2y3 = -15x6y4
vì x6 \(\ge\)0 ; y4 \(\ge\)0 nên -15x6y4 \(\le\)0
Vậy hai đơn thức này không thể cùng dương
xét tích :
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy\)
\(=\frac{1}{10}x^8y^8\)\(\ge\)0
Vậy ba đơn thức không thể cùng có giá trị âm
\(TH1:\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
Vậy ....