* Tính:
a.\(\dfrac{-4}{3}.\sqrt{\left(-0,4\right)^2}\)
b.\(\sqrt[3]{\dfrac{3}{4}}.\sqrt[3]{\dfrac{9}{16}}\)
c.\(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)
\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)
b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)
\(=\left[3-4\right]^2=1\)
c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)
\(=121-48=73\)
d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)
\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)
\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)
e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)
\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)
\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)
a: \(\dfrac{-4}{3}\cdot\sqrt{\left(-0.4\right)^2}=\dfrac{-4}{3}\cdot\dfrac{2}{5}=\dfrac{-8}{15}\)
b: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\dfrac{3}{4}\)
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}+1-\sqrt{2}-\sqrt{3}\)
=3
b) Ta có: \(B=\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left[\sqrt{3}+1-3\left(2+\sqrt{3}\right)+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right]\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{5}{2}\left(3+\sqrt{3}\right)\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(-5-2\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}=\dfrac{1}{2}\)
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)
\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)
b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)
c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)
a) Ta có: \(\dfrac{-4}{3}\cdot\sqrt{\left(-0.4\right)^2}\)
\(=-\dfrac{4}{3}\cdot0.4\)
\(=\dfrac{-1.6}{3}=-\dfrac{8}{15}\)
b) Ta có: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}\)
\(=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)
c) Ta có: \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
\(=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{7}\)
\(=\dfrac{6}{7}\)