chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: (x^2+7)(x+2)-x(x^2-2x+22)-(4x^2-15x+7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x+2)(x^2-2x+4)-x^2 .(x-2) -2x^2`
`=x^3+2^3-(x^3-2x^2)-2x^2`
`=x^3+8-x^3+2x^2-2x^2`
`=8`
\(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2\)
\(=x^3+8-x^3+2x^2-2x^2\)
=8
\(2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
=> BT trên ko phụ thuộc vào biến x
\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2-7x-15-2x^2+6x+x+7=-8\)
(x – 5)(2x + 3) – 2x(x – 3) + x + 7
= x.(2x + 3) + (–5).(2x + 3) – 2x.(x – 3) + x + 7
= (x.2x + x.3) + (–5).2x + (–5).3 – (2x.x + 2x.(–3)) + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= (2x2 – 2x2) + (3x – 10x + 6x + x) + 7 – 15
= – 8
Vậy với mọi giá trị của biến x, biểu thức luôn có giá trị bằng –8
2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)
\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)
3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)