* Chứng minh đẳng thức:
\(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\\ =\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\ =-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2=VP\)
\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)
a) \(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(=\left[\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right].\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)\)
\(=\sqrt{49}-\sqrt{21}+\sqrt{21}-\sqrt{9}\)
\(=7-3=4\)
\(=\sqrt{25-\sqrt{21}}\left(\sqrt{14}+\sqrt{6}\right)\)
Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(\sqrt{6}+1\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3\sqrt{6}+3+\sqrt{30}+\sqrt{5}\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+2\sqrt{15}+\sqrt{10}-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+\sqrt{15}+\sqrt{10}-\sqrt{5}}{ }\)
Đề sai rồi bạn
Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
\(=\dfrac{\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{\sqrt{20}-2}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\left(6+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{2\left(\sqrt{5}-1\right)}-\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{6+2\sqrt{5}-\sqrt{5}}{2}\)
\(=\dfrac{6-\sqrt{5}}{2}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
\(VT=\left(\dfrac{\sqrt{14.14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{30-6\sqrt{21}}+\sqrt{70-14\sqrt{21}}\)
\(=\sqrt{21-2.3\sqrt{21}+9}+\sqrt{21-2.7.\sqrt{21}+49}\)
\(=\sqrt{\left(\sqrt{21}-3\right)^2}+\sqrt{\left(7-\sqrt{21}\right)^2}\)
\(=\sqrt{21}-3+7-\sqrt{21}=4\)