tìm x, y, z biết 8x + 9y + 5z = 1980 khi y=2/3x và 4z = 3y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`y=2/3x`
`=>3y=2x`
`=>8x=12y`
Mặt khác:`4z=3y`
`=>z=3/4y`
`=>5z=15/4y`
Thay `8x=12y,5z=15/4y` vào `8x+9y+5z=1980`
`=>15/4y+9y+12y=1980`
`=>21y+15/4y=1980`
`=>99/4y=1980`
`=>1/4y=20`
`=>y=80`
`=>x=3/2y=120,z=3/4y=60`
Vậy `(x,y,z)=(120,80,60)`
Ta có: 4z=3y
nên \(4z=3\cdot\dfrac{2}{3}x=x\)
hay \(z=\dfrac{1}{4}x\)
Ta có: 8x+9y+5z=1980
\(\Leftrightarrow8x+9\cdot\dfrac{2}{3}x+5\cdot\dfrac{1}{4}x=1980\)
\(\Leftrightarrow x\cdot\dfrac{61}{4}=1980\)
hay \(x=\dfrac{7920}{61}\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}x=\dfrac{2}{3}\cdot\dfrac{7920}{61}=\dfrac{5280}{61}\\4z=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\4z=\dfrac{15840}{61}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\z=\dfrac{3960}{61}\end{matrix}\right.\)
Vậy: \(\left(x,y,z\right)=\left(\dfrac{7920}{61};\dfrac{5280}{61};\dfrac{3960}{61}\right)\)
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Khi đó: \(\frac{x}{3}=12\Rightarrow x=36\)
\(\frac{y}{5}=12\Rightarrow y=60\)
\(\frac{z}{6}=12\Rightarrow z=72\)
Vậy\(x=36\) :\(y=60\) \(z=72\)
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
\(\dfrac{5z-6y}{4}=\dfrac{6x-4z}{5}=\dfrac{4y-5x}{6}\)
\(\Leftrightarrow\dfrac{4\left(5z-6y\right)}{16}=\dfrac{5\left(6x-4z\right)}{25}=\dfrac{6\left(4y-5x\right)}{36}\)
\(\Leftrightarrow\dfrac{20z-24y}{16}=\dfrac{30x-20z}{25}=\dfrac{24y-30x}{36}\)
ADTCDTSBN có:
\(\dfrac{20z-24y}{16}=\dfrac{30x-20z}{25}=\dfrac{24y-30x}{36}=\dfrac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)
Do đó \(20z-24y=0;30x-20z=0\)
\(\Leftrightarrow5z=6y;6x=4z\)
\(\Rightarrow y=\dfrac{5z}{6};x=\dfrac{4z}{6}\)
Có \(3x-3y+5z=96\Rightarrow3.\dfrac{4z}{6}-3.\dfrac{5z}{6}+5z=96\)
\(\Rightarrow z=\dfrac{64}{3}\) \(\Rightarrow y=\dfrac{160}{9}\)và \(x=\dfrac{128}{9}\)
Vậy...
cho x/3 = y/4 và y/5 = z/6. tìm M = 2x + 3y+ 4z / 3x + 4y + 5z
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{6}\)
nên \(\dfrac{y}{20}=\dfrac{z}{24}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)(3)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{4z}{96}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{4z}{96}=\dfrac{2x+3y+4z}{30+60+96}=\dfrac{2x+3y+4z}{186}\)
Từ (3) suy ra \(\dfrac{3x}{45}=\dfrac{4y}{80}=\dfrac{5z}{120}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{45}=\dfrac{4y}{80}=\dfrac{5z}{120}=\dfrac{3x+4y+5z}{45+80+120}=\dfrac{3x+4y+5z}{245}\)
Suy ra: \(M=\dfrac{2x+3y+4z}{3x+4y+5z}=\dfrac{186}{245}\)
Mình ko bít ?