K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

a) Ta có:

\(\sqrt{\frac{289}{225}}=\sqrt{\frac{\sqrt{289}}{\sqrt{225}}}=\sqrt{\frac{17^2}{15^2}}=\frac{17}{15}\)

b) Ta có:

\(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\frac{\sqrt{64}}{\sqrt{25}}}=\sqrt{\frac{8^2}{5^2}}=\frac{8}{5}\)

c) Ta có:

\(\sqrt{\frac{0,25}{9}}=\sqrt{\frac{\sqrt{0,25}}{\sqrt{9}}}=\sqrt{\frac{0,5^2}{3^2}}=\frac{0,5}{3}=\frac{1}{6}\)

d) Ta có:

\(\sqrt{\frac{8,1}{1,6}}=\sqrt{\frac{81.0,1}{16.0,1}}=\sqrt{\frac{81}{16}}=\sqrt{\frac{\sqrt{81}}{\sqrt{16}}}=\sqrt{\frac{9^2}{4^2}}=\frac{9}{4}\)

28 tháng 6 2021

a)Ta có: \(\sqrt{\frac{289}{225}}=\frac{\sqrt{289}}{\sqrt{225}}=\frac{17}{15}\)

b) Ta có: \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{\sqrt{64}}{\sqrt{25}}=\frac{8}{5}\)

c) Ta có: \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{6}\)

d)Ta có : \(\sqrt{\frac{8,1}{1,6}}=\frac{\sqrt{8,1}}{\sqrt{1,6}}=\frac{\sqrt{8,1}.100}{\sqrt{1,6}.100}=\frac{\sqrt{81}}{\sqrt{16}}=\frac{9}{4}\)

19 tháng 4 2021

a, \(\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}\)

b, \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c, \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\)

d, \(\sqrt{\frac{8,1}{16}}\)đề có sai ko cô ? 

13 tháng 5 2021

a) căn 289 / 225 = 17/15

b) căn 64/ 25 = 8/5

c) căn 0,25 / 9 = 1/6

d) căn 8,1 / 1,6 = 9/4

19 tháng 4 2021

a, \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

b, \(\frac{\sqrt{15}}{\sqrt{735}}=\sqrt{\frac{15}{735}}=\sqrt{\frac{1}{49}}=\frac{1}{7}\)

c, \(\frac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\frac{12500}{500}}=\sqrt{\frac{125}{5}}=\sqrt{25}=5\)

d, \(\frac{\sqrt{6^5}}{\sqrt{2^3.3^5}}=\sqrt{\frac{6^5}{2^3.3^5}}=\sqrt{\frac{2^5.3^5}{2^3.3^5}}=\sqrt{2^2}=2\)

13 tháng 5 2021

a) căn 2 / căn 18 = 1/3

b) căn 15/ căn 735 = 1/7

c) căn 12500 / căn 500 = 5

d) căn 6^5 / 2^3 * 3^5 = 2

23 tháng 4 2021

Rút gọn các biểu thức sau với x≥0x≥0:

a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)

b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28

=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28

=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)

23 tháng 4 2021

a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)

\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)

\(=-5\sqrt{3x}+27\)

29 tháng 4 2021

a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)

Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )

Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm ) 

Vậy tập nghiệm của pt là S = { -1 ; 2 } 

b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)

\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)

\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm ) 

Vậy tập nghiệm của pt là S = { 12/5 } 

17 tháng 5 2021
) √ ( 2 x − 1 ) 2 = 3 ⇒ | 2 x − 1 | = 3 ⇔ 2 x − 1 = ± 3 +) TH1: 2 x − 1 = 3 ⇒ 2 x = 4 ⇒ x = 2 +) TH2: 2 x − 1 = − 3 ⇒ 2 x = − 2 ⇒ x = − 1 Vậy x = − 1 ; x = 2 . b) Điều kiện: x ≥ 0 5 3 √ 15 x − √ 15 x − 2 = 1 3 √ 15 x ⇔ 5 3 √ 15 x − √ 15 x − 1 3 √ 15 x = 2 ⇔ ( 5 3 − 1 − 1 3 ) √ 15 x = 2 ⇔ 1 3 √ 15 x = 2 ⇔ √ 15 x = 6 ⇔ 15 x = 36 ⇔ x = 12 5 Vậy x = 12 5 .
16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

19 tháng 4 2021

a, Ta có  \(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

13 tháng 5 2021

a) căn 25 - 16  > căn 25 - căn 16

 

b)Với a>b>0 nên  \sqrt{a},\sqrt{b},\sqrt{a-b} đều xác định

 

Để so sánh \sqrt{a}-\sqrt{b} và \sqrt{a-b} ta quy về so sánh \sqrt{a} và \sqrt{a-b}+\sqrt{b}.

 

+) (\sqrt{a})^2=a.

                                       

+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}

.

Do a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>0

 

 

\Rightarrow a+2\sqrt{a-b}.\sqrt{b}>a

 

\Rightarrow (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2

 

Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0 

 

\Rightarrow \sqrt{a-b}+\sqrt{b}>\sqrt{a}

 

\Leftrightarrow \sqrt{a-b}>\sqrt{a}-\sqrt{b} (đpcm)

 

Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}.

25 tháng 4 2021

Rút gọn ta được:

M=√a−1/√a

Viết M ở dạng M=1−1/√a

suy ra M<1

29 tháng 4 2021

Với \(x>0;x\ne1\)

\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1 

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)

#Học tốt!!!

17 tháng 5 2021

\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)

\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)

\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)

\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)

24 tháng 4 2021

+ Ta có:

2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)

                   =2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5

                   =2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).

+ Ta có:

3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)

                    =3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7

                    =3(√10−√7)3=√10−√7=3(10−7)3=10−7.

+ Ta có:

1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)

=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y

+ Ta có:

2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)

=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.

24 tháng 4 2021

\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)

\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

TRẢ LỜI :

Để học tốt Toán 9 | Giải bài tập Toán 9

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}\)

Để học tốt Toán 9 | Giải bài tập Toán 9

c) √20 - √45 + 3√18 + √72

= √4.5 - √9.5 + 3√9.2 + √36.2

= 2√5 - 3√5 + 9√2 + 6√2

= -√5 + 15√2

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 5 2021

a) 3√5                                           b) 9√2 / 2

c) -√5 + 15√2                                d)
3,4√2