Tính
\(\left(1+\frac{8}{10}\right).\left(1+\frac{8}{22}\right).\left(1+\frac{8}{36}\right)....\left(1+\frac{8}{8352}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G=(1+8/10)(1+8/22)(1+8/36)...(1+8/8352)
18.30.44...8360
G=----------------------------
10.22.36...8352
9.2.10.3.11.4...95.88
G=-----------------------------------
10.1.11.2.12.3...96.87
(9.10.11...95)(2.3.4....88)
G= -----------------------------------------
(10.11.12...96)(2.3.4...87)
9.88.
G= ---------= 33/4.
96
2A=2+2^2+2^3-2^4+...+2^2017
2A+A=2+1+2^2+2+2^2+2^3-2^3+2^4-2^4+...+2^2017-2^2016
3A=1+2^2+2^3+2^2017
A=(1+2^2+2^3+2^2017)/3
Minh giai 1 bai thoi nha
Nho k cho minh voi
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn
a) \(A=1-2+2^2-2^3+2^4-2^5+.................+2^{2016}\)
\(\Rightarrow2A=2\left(1-2+2^2-2^3+2^4-2^5+............+2^{2016}\right)\)
\(\Rightarrow2A=2-2^2+2^3-2^4+2^5-2^6+...........+2^{2017}\)
\(\Rightarrow2A-A=\left(2-2^2+2^3-2^4+.........+2^{2016}\right)-\left(1-2+2^3+2^4-2^5+.....+2^{2017}\right)\)\(\Rightarrow A=2^{2017}-1\)
Câu a xong đã, câu b tính sau :P