K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

Lời giải:

\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)

\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)

20 tháng 3 2017

Đặt \(A=1.3.5.7...99\)

\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\)

Ta có:

\(A=1.3.5.7...99\)

\(\Rightarrow A=\dfrac{\left(1.3.5.7...99\right)\left(2.4.6.8...100\right)}{2.4.6.8...100}\)

\(\Rightarrow A=\dfrac{1.2.3.4...100}{2.4.6.8...100}\)

\(\Rightarrow A=\dfrac{1.2.3.4...100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.50\right)}\)

\(\Rightarrow A=\dfrac{\left(1.2.3.4...50\right)\left(51.52.53...100\right)}{\left(1.2.3.4...50\right)\left(2.2.2.2...2\right)}\)

\(\Rightarrow A=\dfrac{51.52.53.54...100}{2.2.2.2...2}\)

\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}....\dfrac{100}{2}\)

\(\Rightarrow A=B\)

Vậy \(1.3.5.7...99=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\) (Đpcm)

20 tháng 3 2017

VT: 1.3.5.7....99=\(\dfrac{(1.3.5.7.....99).\left(2.4.6....100\right)}{2.4.6....100}\)

\(=\dfrac{\left(1.3.5.7.....99\right)\left(2.4.6.....100\right)}{1.2.2.2.2.3.....2.50}\)\(=\dfrac{\left(1.2.3.4.....50\right)\left(51.52.53....100\right)}{\left(1.2.3.4......50\right)\left(2.2.2.2.2....2\right)}\)

\(=\dfrac{51.52.53......100}{2.2.2.2.....2}=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}......\dfrac{100}{2}=VP\left(đpcm\right)\)

13 tháng 4 2017

b)Ta có :

\(A=1.3.5...........99\)

\(\Rightarrow A=\dfrac{\left(1.3.7.9.............99\right)\left(2.4.6.8........100\right)}{2.4.6.8.............100}\)

\(\Rightarrow A=\dfrac{1.2.3.4.............100}{2.4.6.8................100}\)

\(\Rightarrow A=\dfrac{1.2.3.4..................100}{\left(2.1\right)\left(2.2\right)...............\left(2.50\right)}\)

\(\Rightarrow A=\dfrac{51.52.53...........................100}{2.2.2.2.............................2}\)

\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.............\dfrac{100}{2}\)

\(\Rightarrow A=D\)

~ Chúc bn học tốt ~

mk hỏi này sao mà 1.2.3.4.....100/(2.1).(2.2)...(2.50)lại =51.52.53..........100/2.2.2........2

13 tháng 3 2021

- Ta có : `C=51/2 * 52/2 * 53/2* ... * 100/2`

`-> C=(51.52.53...100)/(2^50)`

`-> C=((1.2.3...50).(51.52.53...100))/((1.2.3...50).2^50)`

`-> C=(1.2.3...100)/((1.2).(2.2).(3.2)...(50.2))`

`-> C=(1.2.3...100)/(2.4.6...100)`

`-> C=1.3.5.7...99`

- Từ đó ta có :

`B-C=1.3.5.7...99-1.3.5.7...99=0`

- Vậy `B-C=0`

12 tháng 5 2018

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\cdot\dfrac{1}{2}-2\cdot\dfrac{1}{4}-...-2\cdot\dfrac{1}{100}\)

\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\dfrac{1}{1}-\dfrac{1}{2}-...-\dfrac{1}{50}\)

\(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)

\(\Rightarrow A=B\)

13 tháng 5 2018

tớ giải chi tiết hơn nhá:

A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=(\(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

A=\(\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

A=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)

Vậy A=B

20 tháng 3 2016

\(A=1.3.5.7...99=\frac{\left(1.3.5.7...99\right)\left(2.4.6...100\right)}{2.4.6...100}=\frac{1.2.3...100}{\left(2.1\right)\left(2.2\right)...\left(2.50\right)}=\frac{\left(1.2.3...50\right)\left(51.52.53....100\right)}{\left(1.2.3...50\right)\left(2.2.2...2\right)}=\frac{51.52.53...100}{2.2...2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=B\)

14 tháng 3 2018

undefined

18 tháng 7 2016

\(R=1.3.5.7...99\)

\(R=\frac{1.2.3.4.5.6.7.8...99.100}{2.4.6.8...100}\)

\(R=\frac{1.2.3.4.5.6..8...99.100}{\left(2.2.2.2...2\right).\left(1.2.3.4...50\right)}\)

\(R=\frac{51.52.53...100}{2.2.2.2...2}\)

\(R=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=S\)

Vậy R = S