So sánh A và B :
\(A=1.3.5.7.....99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1.3.5.7...99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\)
Ta có:
\(A=1.3.5.7...99\)
\(\Rightarrow A=\dfrac{\left(1.3.5.7...99\right)\left(2.4.6.8...100\right)}{2.4.6.8...100}\)
\(\Rightarrow A=\dfrac{1.2.3.4...100}{2.4.6.8...100}\)
\(\Rightarrow A=\dfrac{1.2.3.4...100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.50\right)}\)
\(\Rightarrow A=\dfrac{\left(1.2.3.4...50\right)\left(51.52.53...100\right)}{\left(1.2.3.4...50\right)\left(2.2.2.2...2\right)}\)
\(\Rightarrow A=\dfrac{51.52.53.54...100}{2.2.2.2...2}\)
\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}....\dfrac{100}{2}\)
\(\Rightarrow A=B\)
Vậy \(1.3.5.7...99=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\) (Đpcm)
VT: 1.3.5.7....99=\(\dfrac{(1.3.5.7.....99).\left(2.4.6....100\right)}{2.4.6....100}\)
\(=\dfrac{\left(1.3.5.7.....99\right)\left(2.4.6.....100\right)}{1.2.2.2.2.3.....2.50}\)\(=\dfrac{\left(1.2.3.4.....50\right)\left(51.52.53....100\right)}{\left(1.2.3.4......50\right)\left(2.2.2.2.2....2\right)}\)
\(=\dfrac{51.52.53......100}{2.2.2.2.....2}=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}......\dfrac{100}{2}=VP\left(đpcm\right)\)
b)Ta có :
\(A=1.3.5...........99\)
\(\Rightarrow A=\dfrac{\left(1.3.7.9.............99\right)\left(2.4.6.8........100\right)}{2.4.6.8.............100}\)
\(\Rightarrow A=\dfrac{1.2.3.4.............100}{2.4.6.8................100}\)
\(\Rightarrow A=\dfrac{1.2.3.4..................100}{\left(2.1\right)\left(2.2\right)...............\left(2.50\right)}\)
\(\Rightarrow A=\dfrac{51.52.53...........................100}{2.2.2.2.............................2}\)
\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.............\dfrac{100}{2}\)
\(\Rightarrow A=D\)
~ Chúc bn học tốt ~
mk hỏi này sao mà 1.2.3.4.....100/(2.1).(2.2)...(2.50)lại =51.52.53..........100/2.2.2........2
- Ta có : `C=51/2 * 52/2 * 53/2* ... * 100/2`
`-> C=(51.52.53...100)/(2^50)`
`-> C=((1.2.3...50).(51.52.53...100))/((1.2.3...50).2^50)`
`-> C=(1.2.3...100)/((1.2).(2.2).(3.2)...(50.2))`
`-> C=(1.2.3...100)/(2.4.6...100)`
`-> C=1.3.5.7...99`
- Từ đó ta có :
`B-C=1.3.5.7...99-1.3.5.7...99=0`
- Vậy `B-C=0`
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\cdot\dfrac{1}{2}-2\cdot\dfrac{1}{4}-...-2\cdot\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\dfrac{1}{1}-\dfrac{1}{2}-...-\dfrac{1}{50}\)
\(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
\(\Rightarrow A=B\)
tớ giải chi tiết hơn nhá:
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A=(\(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
Vậy A=B
\(A=1.3.5.7...99=\frac{\left(1.3.5.7...99\right)\left(2.4.6...100\right)}{2.4.6...100}=\frac{1.2.3...100}{\left(2.1\right)\left(2.2\right)...\left(2.50\right)}=\frac{\left(1.2.3...50\right)\left(51.52.53....100\right)}{\left(1.2.3...50\right)\left(2.2.2...2\right)}=\frac{51.52.53...100}{2.2...2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=B\)
\(R=1.3.5.7...99\)
\(R=\frac{1.2.3.4.5.6.7.8...99.100}{2.4.6.8...100}\)
\(R=\frac{1.2.3.4.5.6..8...99.100}{\left(2.2.2.2...2\right).\left(1.2.3.4...50\right)}\)
\(R=\frac{51.52.53...100}{2.2.2.2...2}\)
\(R=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=S\)
Vậy R = S
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)