K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

Gọi cạnh của tam giác là a, trung điểm BC là I.

+Ta có: \(BC=a\sqrt{2};\text{ }IB=IC=\frac{IA}{2}=\frac{a}{\sqrt{2}}\)

+Ta có: \(MB^2+MC^2=\left(\frac{a}{\sqrt{2}}-IM\right)^2+\left(\frac{a}{\sqrt{2}}+IM\right)^2=a^2+2IM^2\text{ (1)}\)

+AI vừa là trung tuyến vừa là phân giác góc A nên AI là trung trực tam giác ABC.

=> Tam giác AIM vuông tại I

\(\Rightarrow AM^2=AI^2+IM^2=\left(\frac{a}{\sqrt{2}}\right)^2+IM^2=\frac{a^2}{2}+IM^2\)

\(\Rightarrow2AM^2=a^2+2IM^2\text{ (2)}\)

Từ (1) và (2) suy ra \(MB^2+MC^2=2MA^2\)

4 tháng 8 2018

Gọi cạnh của tam giác là a, trung điểm BC là I.

+Ta có: BC=a√2; IB=IC=IA2 =a√2 

+Ta có: MB2+MC2=(a√2 −IM)2+(a√2 +IM)2=a2+2IM2 (1)

+AI vừa là trung tuyến vừa là phân giác góc A nên AI là trung trực tam giác ABC.

=> Tam giác AIM vuông tại I

⇒AM2=AI2+IM2=(a√2 )2+IM2=a22 +IM2

⇒2AM2=a2+2IM2 (2)

Từ (1) và (2) suy ra MB2+MC2=2MA2

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>AI=AI và MI=MK

c:AI=AK

MI=MK

=>AM là trung trực của IK=>AM vuông góc IK

5 tháng 3 2023

ê

28 tháng 2 2018

a)  Xét 2 tam giác vuông:   AMB  và    AMC   có:

AM: cạnh chung

AB  =   AC   (gt)

suy ra: tam giác AMB  =   tam giác AMC   (ch-cgv)

b) Tam giác AMB   =   tam giácAMC

suy ra:   góc BAM = góc CAM

Xét 2 tam giác vuông: AMH  và   AMK   có:

AM:  chung

góc HAM  =  góc 

suy ra   tam giác AMH  =   tam giác AMK  

suy ra   AH = AK