Bạn nào biết chắc chắn câu trả lời thì giúp mình với nhé
Tính các biểu thức sau :
A= 1+1/2+1/2^2+1/2^3+...+1/2^2015
B= -1/3+1/3^2-1/3^3+...+1/3^100-1/3^101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\)
\(\Rightarrow2A=2.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)
\(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)
\(\Rightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)
\(\Rightarrow A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2006}}\)
\(=2-\frac{1}{2^{2006}}\)
Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh
Câu 1 :
\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN
<=> 2(n - 1)2 + 3 có GTNN
Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3
=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1
Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
Tớ cx dg lm cái này :v