K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

$BH=\frac{AB}{2}; CK=\frac{AC}{2}$ nên nếu $BH=CK$ thì $AB=AC$. Điều này không có trong điều kiện đề bài. 

Bạn xem lại đề. 

26 tháng 6 2021

Ý B để mk nghĩ đã

undefined

23 tháng 2 2021

Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc

Mk nghĩ bn nên xem lại đề bài.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK

13 tháng 4 2021

Tự vẽ hình nhé bạn:vv

a) Xét ∆MHC và ∆MKB:

\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)

\(CM=MB\left(gt\right)\)

\(HM=MK\left(gt\right)\)

=> ∆MHC=∆MKB(c.g.c)

b) Vì ∆ABC vuông ở A có đường trung tuyến AM

\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)

=> ∆AMC cân tại M

=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.

=> AH=CH

Mà theo câu a: ∆MHC=∆MKB 

=> CH=KB (2 cạnh tương ứng)

=> AH=KB

=> Đpcm

c) Xét ∆ABC có : AM và BH là 2 đường cao

=> I là trọng tâm của ∆ABC

Mà D là trung điểm của AB

=> CD là đường cao thứ 3 của ∆ABC

=> CD phải đi qua trọng tâm I

=> C, D, I thẳng hàng.

a) Xét ΔMHC và ΔMKB có

MH=MK(gt)

\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMHC=ΔMKB(c-g-c)

a, tứ giác AKHM có

∠AHM= ∠AKM =∠HAK ( =90 )

⇒ tứ giác AKHM là hình chữ nhật 

b)Ta có tam giác ABC có M trug điểm BC

NH vuông góc vs AB=> MH// AC và MH =1/2 AC

Cmtt K là trung điểm AC

=> HK là đg tb của tam giác ABC=> HK//B M   Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành

c)Ta có EF là đường tb tam giác MHK

=> EF//HK 

EF// HK và EF=1/2 HK

GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM

EF= HO= KO

Mà HO= HI+IO

=> KO=JO+KJ

Mà IO= JO=> HI= KJ

d) Dễ thấy EF =1/3 AB= 4 căn 3 /3