cho tam giác abc vuông tại a trung tuyến am vẽ mh vuông góc với ab tại h mk vuông góc ac tại k
a chứng minh BH=CK
b chứng minh am là đường trung trực của hk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc
Mk nghĩ bn nên xem lại đề bài.
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Ta có: ΔAHK cân tại A
mà AM là đường phân giác
nên AM là đường trung trực của HK
Tự vẽ hình nhé bạn:vv
a) Xét ∆MHC và ∆MKB:
\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)
\(CM=MB\left(gt\right)\)
\(HM=MK\left(gt\right)\)
=> ∆MHC=∆MKB(c.g.c)
b) Vì ∆ABC vuông ở A có đường trung tuyến AM
\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)
=> ∆AMC cân tại M
=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.
=> AH=CH
Mà theo câu a: ∆MHC=∆MKB
=> CH=KB (2 cạnh tương ứng)
=> AH=KB
=> Đpcm
c) Xét ∆ABC có : AM và BH là 2 đường cao
=> I là trọng tâm của ∆ABC
Mà D là trung điểm của AB
=> CD là đường cao thứ 3 của ∆ABC
=> CD phải đi qua trọng tâm I
=> C, D, I thẳng hàng.
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
a, tứ giác AKHM có
∠AHM= ∠AKM =∠HAK ( =90 )
⇒ tứ giác AKHM là hình chữ nhật
b)Ta có tam giác ABC có M trug điểm BC
NH vuông góc vs AB=> MH// AC và MH =1/2 AC
Cmtt K là trung điểm AC
=> HK là đg tb của tam giác ABC=> HK//B M Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành
c)Ta có EF là đường tb tam giác MHK
=> EF//HK
EF// HK và EF=1/2 HK
GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM
EF= HO= KO
Mà HO= HI+IO
=> KO=JO+KJ
Mà IO= JO=> HI= KJ
d) Dễ thấy EF =1/3 AB= 4 căn 3 /3
$BH=\frac{AB}{2}; CK=\frac{AC}{2}$ nên nếu $BH=CK$ thì $AB=AC$. Điều này không có trong điều kiện đề bài.
Bạn xem lại đề.
Ý B để mk nghĩ đã