K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

a) Để phương trình trên là phương trình bậc nhất thì: m≠\(\dfrac{3}{8}\)

c) Để phương trình vô nghiệm thì: m=0

d) Để phương trình vô số nghiệm thì m=\(\dfrac{3}{8}\)

21 tháng 1 2022

a/ \(\left(2m-3\right)x+\left(x-3\right)4m+2mx=0\)

\(\Leftrightarrow\left(8m-3\right)x-12m=0\)

Để phương trình là hàm số bậc 1 :

\(8m-3\ne0\Leftrightarrow m\ne\dfrac{3}{8}\)

b/ Phương trình vô nghiệm :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m\ne0\end{matrix}\right.\)

c/ Phương trình vô số nghiệm khi :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m=0\end{matrix}\right.\)

 

a: Khi m=-2 thì phương trình sẽ là \(x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(4m\right)^2-4\left(4m-1\right)\)

\(=16m^2-16m+4=\left(4m-2\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì 4m-2<>0

hay m<>1/2

10 tháng 5 2022

`a)` Thay `m=-2` vào ptr có:

    `x^2+4.(-2)x+4.(-2)-1=0`

`<=>x^2-8x-9=0`

Ptr có: `a-b+c=1-(-8)+(-9)=0`

 `=>x_1=-1;x_2=[-c]/a=9`

Vậy với `m=-2` thì `S={-1;9}`

_____________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>(2m)^2-(4m-1) > 0`

`<=>4m^2-4m+1 > 0`

`<=>(2m-1)^2 > 0`

   `=>(2m-1)^2 \ne 0`

`<=>2m-1 \ne 0<=>m \ne 1/2`

Vậy ...........

a: Để hệ có duy nhất 1 nghiệm thì \(\dfrac{m}{4}< >\dfrac{-1}{-m}=\dfrac{1}{m}\)

=>m^2<>4

=>m<>2 và m<>-2

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}=\dfrac{1}{m}\)

=>m^2=4 và 2m^2=m+6

=>m=2

c: Để hệ vô nghiệm thì m/4=1/m<>2m/m+6

=>m=-2

5 tháng 5 2022

b > Để pt 1 có 2 nghiệm phân biệt 

=> \(\Delta>0\)  <=> \(3^2-4\left(m-3\right)>0\)

<=> 9 -4m +12 >0 

<=> -4m+21>0

<=> m<\(\dfrac{21}{4}\)

Vậy m<\(\dfrac{21}{4}\)  là giá trị cần tìm tm yc đề bài

5 tháng 5 2022

phần a tự giải nha bạn

 

26 tháng 4 2022

a) \(\Delta'=m^2-1\)

b) Phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow m^2-1=0\Leftrightarrow m=\pm1\)

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Thịnh ơi, vì sao mình không dùng x1x2 để tìm m