K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

`A)1/(1.2)+1/(2.3)+....+1/(100.101)`

`=1-1/2+1/2-1/3+...+1/100-1/101`

`=1-1/101=100/101`

a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)

10 tháng 7 2017

Câu 1: 

a) Số hạng thứ 100 của tổng là: 

(100-1) * 3 + 5 = 302

b) Tổng 100 số hạng đầu tiên là: 

(302 + 5) * 100 : 2 = 15350

                  Đ/S: a) 302

                         b) 15350

Câu 2:

a) Số hạng thừ 50 của tổng là: 

(50 - 1) * 5 + 7 =252

b) Tổng 50 số hạng đầu là:

(252 + 7) * 50 : 2 =6475

                   Đ/S: a) 252

                          b) 6475

10 tháng 9 2017

s=5+8+11+14+..

nhận xét :5+3=8

               8+3=11

                11+3=14

...............

vậy => dãy số trên là dãy số cách đều 3 đv

giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:

(x-5):3+1=100

(x-5):3=100-1

(x-5):3=99

x-5=99x3

x-5=297

x=297+5

x=302

vậy số hạng đứng thứ 100 của dãy là: 302

b) ta có dãy :5+8+11+14+..

(302+5) x100:2=15350

cậu giải tương tự như trên nhá

công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1

---------------------------------tính tổng:(sc+sđ)x số số hạng :2

22 tháng 12 2016

mỗi số hàng ở day đó hơn nhau số đơn vị là :

 4 -1 = 3

số hạng thứ 100 của dãy là:

1+ (100 - 1)*3=300

đáp số : 300

Tính tổng cơ mà

26 tháng 8 2017

Tính: S=1/6+1/66+1/176+1/336+...
1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế
Số hạng thứ 100 là: 1 +5 x(100-1)=496.
Phân số thứ 100 là:1/496 x501
Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501
Nhân 2 vế S với 5
Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501
S= 100/501

24 tháng 6 2018

Bài 1: A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100. Bài 2: Tính: S=1/6+1/66+1/176+1/336+... 1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế Số hạng thứ 100 là: 1 +5 x(100-1)=496. Phân số thứ 100 là:1/496 x501 Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501 Nhân 2 vế S với 5 Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501 S= 100/501

28 tháng 8 2016

1. Số thứ 100 là :

           1 + ( 100 - 1 ) x 3 = 298

2.Tổng của 100 số hạng đầu tiên là :

            ( 298 + 1 ) x 100 : 2 = 14950

3. Các số 111 , 22222 không có trong dãy số

nhớ k nha

1) ta có : ( x - 1 ) : 3 + 1 = 100

             ( x - 1 ) : 3 = 99

           x - 1 = 297

      => x = 298

vậy số thứ 100 của dãy là 298

30 tháng 3 2016

1/1-1/2=1/1.2

1/2-1/3=1/2.3

........1/n-1/n+1=1/n(n+1)

=1/1.2+1/2.3+.......+1/100.101

=1/1-1/2+1/2-1/3+......+1/100-1/101

=1-1/101=100/101

ai tích mk ;mk tích lại

19 tháng 1 2022

Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)

\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)

=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)

Tổng 100 số hạng đầu tiên:

- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)

\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)

19 tháng 1 2022

-Dãy số tổng quát:

\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)

-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)

-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)

- Tổng 100 số hạng đầu tiên của dãy:

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)