Hình thang ABCD có đáy AD gấp 3 lần đáy BC,2 đường chéo AC và BD cắt nhau tại I a,tìm các cặp tam giác tạo thành trog hình thang có phần diện tích bằng nhau(giải thích vì sao) b,tính diện tích tam giác AIB biết diện tích hình thang là 48cm2......HÉO MÌ VS BÀ CON ỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: BC = 1/2AD
SABC = SBCD
+ hai tam giác có chung đáy
+ có chiều cao bằng chiều cao hình thang
- mà 2 tam giác có chung SICB
=> cặp tam giác bằng nhau được tạo trong hình thang là SABI = SICD
b) BI = 1/3ID => SICB = 1/3SICD do 2 tam giác có chung cao hạ từ C xuống AB và đáy BI = 1/3IB
chứng minh ngược: SBCD = 1/3SABD vì 2 tam giác có chung chiều cao là chiều cao của hình thang
đáy BC = 1/3AD
mặt khác: 2 tam giác có chung đáy BD nên IC = 1/3AI
=> SAIB = 3SBIC
vì 2 tam giác có chung đường cao hạ từ B xuống AC
IC = 1/3AI
=> SAIB = 2/3SABC = 1/4.2/3(SABCD) = 2/12SABCD
=> 2/12SABCD = 2/12.48 = 8 cm^2
nguồn: Dũng Lê Trí
Chiều dài đáy lớn là
3.8 =24(cm)
Đường cao hình thang là
\(\frac{8}{100}.25=2\left(cm\right)\)
=> Diện tích hình thang là
SAHD = \(\frac{\left(AB+DC\right).h}{2}\) => \(\frac{\left(8+24\right).2}{2}=32\left(cm2\right)\)
(giải thích thì mik chị ko biết)
b) Ta có cặp tam giác ADC song song với cặp BDC và S bằng nhau vì cùng đáy + chiều cao
=> tương tự SABD = SABC vì chiều cao đáy = nhau
\(=>AOB=DOC\left(dd\right)\)
\(=>ABD=ABD\)
Tương tự nhé
~Hok tốt`
#) Giải
a. Ta có cặp tam giác BIC và AID vì từ điểm A và B kéo xuống trung tâm I thì hai đoạn đó bằng nhau và BC = AD => Hai tam giác đó bằng nhau.
Tương tự như thế, AC và DB bằng nhau cắt tại trung tâm I và AI = AB => Hai tam giác ABC và ABD có diện tích bằng nhau.
Ta có 2 cặp tam giác bằng nhau là tam giác BIC, AID và cặp khác gồm hai tam giác ABC và ABD.
b.
\(BI=\frac{1}{3}ID\) => S BIC = \(\frac{1}{3}\)S CID do hai tam giác có chung cao hạ từ C xuống BD và đáy BI = 1/3 ID
Tương tự chứng minh với hai tam giác BIC với AIB thôi
C/M ngược : S BCD = 1/3 S ABD vì hai tam giác có chung chiều cao là chiều cao của hình thang
Và đáy BC = 1/3 AD
Mặt khác hai tam giác có chung đáy BD nên cao IC = 1/3 cao AI
Từ đó ta có : \(S_{AIB}=3S_{BIC}\)
Vì hai tam giác có chung cao hạ từ B xuống AC
- Cao IC = 1/3 cao AI
\(\Rightarrow S_{AIB}=\frac{2}{3}S_{ABC}=\frac{1}{4}\cdot\frac{2}{3}\left(S_{ABCD}\right)=\frac{2}{12}S_{ABCD}\)
\(\frac{2}{12}S_{ABCD}=48\cdot\frac{2}{12}=8\left(cm^2\right)\)
Đ/s: ....
~ Hok tốt ~
\(BC=\frac{1}{3}AD\)
\(S_{ABC}=S_{BCD}\)
- Hai tam giác có chung đáy
- Có chiều cao bằng chiều cao hình thang
+ Mặt khác :Hai tam giác có chung diện tích ICB nên từ đó suy ra :
Cặp tam giác bằng nhau tạo thành trong hình thang là :
\(S_{ABI}=S_{ICD}\)
b) \(S_{ABC}=\frac{1}{3}S_{ACD}\)
- Đáy BC = 1/3 đáy CD
- Có chiều cao bằng chiều cao hình thang
+ Vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống I = 1/3 chiều cao hạ từ D xuống I
\(BI=\frac{1}{3}ID\)
Từ dữ kiện BI = 1/3 ID là bạn có thể tự chứng minh tiếp được rồi
ê bà Ánh,bà bt làm bài này k,giúp tui vs