Ch0 biểu thức \(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)với a>0, b>0.
a) Rút gọn A
b) Tìm b để A=1
10k vittel cho bạn nào nhanh nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=2\sqrt{b}\)
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{-b+\sqrt{a}.\sqrt{b}}{\sqrt{b}}\)
\(D=\frac{\left[\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}\right].\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right).\sqrt{b}}-\frac{\left(\sqrt{a}.\sqrt{b}-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{\left[\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}\right]-\left(\sqrt{a}.\sqrt{b}-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{2b.\sqrt{a}+2b.\sqrt{b}}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{2b.\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=2\sqrt{b}\)
\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right).\left(b-a\right)}{\sqrt{ab}.\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}.\left(b-a\right)}\right)\)
giải tiếp
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{\sqrt{ab}.\left(a+b\right)}{\sqrt{ab}.\left(b-a\right)}\right)=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right).\left(\frac{b-a}{a+b}\right)\)
\(=\frac{b-a}{\sqrt{a}+\sqrt{b}}=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}\)
a) ĐK: a > 0; b > 0
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
\(=\frac{\sqrt{a}+\sqrt{b}+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}-b\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)-b\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}-b\)
\(=2\sqrt{b}-b\)
b) \(A=1\)\(\Rightarrow\)\(2\sqrt{b}-b=1\)
\(\Leftrightarrow\)\(b-2\sqrt{b}+1=0\)
\(\Leftrightarrow\) \(\left(\sqrt{b}-1\right)^2=0\)
\(\Leftrightarrow\)\(\sqrt{b}-1=0\)
\(\Leftrightarrow\)\(\sqrt{b}=1\)
\(\Leftrightarrow\)\(b=1\) (t/m ĐKXĐ)
Vậy b=1