Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D.kẻ om vuông góc với cd tại m cminh OM^2=AC*BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Độc giả tự vẽ hình, người giải ko biết cách đăng hình:))*
Gọi giao điểm của CO và BD là Z
Xét 2 tam giác vuông AOC và BOZ có:
OA=OB (O là trung điểm AB)
Góc AOC = góc BOZ (đối đỉnh)
Suy ra: tam giác AOC = tam giác BOZ (cgv-gn)
Do đó: AC=BZ và OC=OZ (các cặp cạnh tương ứng)
Vì OC=OZ nên O là trung điểm CZ => OD là đường trung tuyến tam giác DCZ (1)
Vì OD vuông góc OC nên OD là đường cao tam giác DCZ (2)
Từ (1) và (2) suy ra: tam giác DCZ cân tại D (có OD vừa là đường cao vừa là đường trung tuyến) => CD=DZ (3)
Mặt khác: DZ=BD+BZ
Mà: AC=BZ (cmt)
Nên: DZ=BD+AC (4)
Từ (3) và (4) suy ra: CD=BD+AC (đpcm)
CM tg OAC đồng dạng tg OBD ( g - g )
=> OA.OB = AC.BD
mà OA = OB
=> OA\(^2\)= AC.BD
tg OAC vuông tại A có :
OC2 = AC\(^2\)+ OA2
tg OBD vuông tại B có :
OD2 = BD2 + OB2
tg OBD vuông tại O có :
CD2 = OC2 + OD2 = AC\(^2\)+ OA2 + BD2 + OB2 = AC2 + 2OA2 + BD2
= AC2 + 2AC.BD + BD2
= ( AC + BD ) 2
=> CD = AC + BD
CHO TICK NHA !