\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=?.\)
Help me !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow B^2=8+2\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow B=\sqrt{5}+1\)
a/ \(\sqrt{5\sqrt{3}+5\sqrt{48}-10\sqrt{7+4\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+20\sqrt{3}-10\sqrt{\left(2+\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+20\sqrt{3}-20-10\sqrt{3}}\)
\(=\sqrt{15\sqrt{3}-20}\)
a) \(\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{18}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)
\(=\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{2\times3^2}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{3\times2^2}\)
\(=\frac{2}{3}\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{2}{5}\sqrt{2}-\frac{1}{2}\sqrt{3}\)
\(=\frac{1}{6}\sqrt{3}-\frac{7}{20}\sqrt{2}=\frac{10\sqrt{3}-21\sqrt{2}}{60}\)
b) \(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(=\sqrt{2}\left(\sqrt{5}+1\right)\left(5-2\sqrt{5}\times1+1\right)\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}\)
\(=4\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}\times1+1}\)
\(=4\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}+1\right)^2}=4\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)
\(=4^2=16\)
\(H=2\sqrt{27}+\sqrt{243}-6\sqrt{12}\\ =2\cdot\sqrt{9}\cdot\sqrt{3}+\sqrt{81}\cdot\sqrt{3}-6\cdot\sqrt{4}\cdot\sqrt{3}\\ =2\cdot3\cdot\sqrt{3}+9\cdot\sqrt{3}-6\cdot2\cdot\sqrt{3}\\ =6\sqrt{3}+9\sqrt{3}-12\sqrt{3}\\ =3\sqrt{3}=\sqrt{9}\cdot\sqrt{3}=\sqrt{27}\)
\(I=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\\ =\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\\ =\sqrt{\sqrt{13}^2-2\cdot\sqrt{13}\cdot1+1^2}+\sqrt{\sqrt{13}^2+2\cdot\sqrt{13}\cdot1+1^2}\\ =\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\\ =\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\\ =\sqrt{13}-1+\sqrt{13}+1\\ =2\sqrt{13}=\sqrt{4}\cdot\sqrt{13}=\sqrt{52}\)
\(I=\sqrt{10-4\sqrt{6}}+\sqrt{10+4\sqrt{6}}\\ =\sqrt{6-2\cdot\sqrt{6}\cdot2+4}+\sqrt{6+2\cdot\sqrt{6}\cdot2+4}\\ =\sqrt{\sqrt{6}^2-2\cdot\sqrt{6}\cdot2+2^2}+\sqrt{\sqrt{6}^2+2\cdot\sqrt{6}\cdot2+2^2}\\ =\sqrt{\left(\sqrt{6}-2\right)^2}+\sqrt{\left(\sqrt{6}+2\right)^2}\\ =\left|\sqrt{6}-2\right|+\left|\sqrt{6}+2\right|\\ =\sqrt{6}-2+\sqrt{6}+2\\ =2\sqrt{6}=\sqrt{4}\cdot\sqrt{6}=\sqrt{24}\)
\(a,VT=9+4\sqrt{5}=\sqrt{5^2}+2.2\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2=VP\left(dpcm\right)\)
\(b,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\Leftrightarrow\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
Ta có : \(VT=\sqrt{9-4\sqrt{5}}=\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2=VP\left(dpcm\right)\)
`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`
`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`
`<=>A^2=8+2sqrt{6-2sqrt5}`
`<=>A^2=8+2sqrt{(sqrt5-1)^2}`
`<=>A^2=8+2(sqrt5-1)`
`<=>A^2=6+2sqrt5=(sqrt5+1)^2`
`<=>A=sqrt5+1(do \ A>0)`
`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`
Vì `35+12sqrt6>35-12sqrt6`
`=>B>0`
`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`
`<=>B^2=70-2sqrt{361}`
`<=>B^2=70-2sqrt{19^2}=70-38=32`
`<=>B=sqrt{32}=4sqrt2(do \ B>0)`
`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`
`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`
`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`
`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`
`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`
`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`
`=(sqrt5+sqrt3)(sqrt5-sqrt3)`
`=5-3=2`
Bình phương 2 vế rồi tính như bth
giúp mk ý này luôn đi
\(8m^3-18m^2+21m-34=0.\)
này làm bài kia tới chỗ này rồi phân tích kiểu sao đây