Bài 1
CMR nếu:
(a+b+c)^2=3(ab+bc+ac)thì a=b=c
Bài 2:
CMR:
(11^n+2 + 12^2n+1)chia hết cho 133 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
a, 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> 7 . 52n + 12 . 6n ⋮ 19
b, 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> 11n + 2 + 122n + 1 ⋮ 133
Bài làm :
a) 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> Điều phải chứng minh
b) 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> Điều phải chứng minh
1. 11n+2 + 122n+1
= 11n. 121 + 144n.12
=11n.(133-12) + 144n.12
= 11n.133 + 12(144n - 11n)
11n.133 chia het cho 133
144n-11n chia hết cho 144-11=133
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
\(1;\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
Vì đẳng thức trên bằng nhau nên :\(\Rightarrow a=b=c\)
2)\(11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)