Cho : \(\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\)
Tính giá trị của biểu thức E = x + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)
\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)
ối lắm thế :((
3.
a/ Giả sử đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là k
=> y = k/x
Thay x = 8 ; y = 15 vào ct y = k/x ta có
\(\dfrac{k}{8}=15\Rightarrow k=120\)
Thay \(k=120\) vào ct \(y=\dfrac{k}{x}\) ta có
\(y=\dfrac{120}{x}\)
b/ Thay x = 6 vào ct \(y=\dfrac{120}{x}\) ta có
\(y=\dfrac{120}{6}=20\)
Thay x = - 10 vào ct \(y=\dfrac{120}{x}\) ta có
\(y=\dfrac{120}{-10}=-12\)
b/ Thay y = 2 vào ct \(y=\dfrac{120}{x}\) ta có
\(2=\dfrac{120}{x}\Rightarrow x=60\)
Thay y = - 30 vào ct \(y=\dfrac{120}{x}\) ta có
\(-30=\dfrac{120}{x}\Rightarrow x=-4\)
4/
a/ Giả sử đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là k
=> y = xk
Thay y = 4 ; x = 6 vào ct y = xk ta có
\(4=6k\Rightarrow k=\dfrac{2}{3}\)
Thay \(k=\dfrac{2}{3}\) vào ct y = xk ta có
\(y=\dfrac{2}{3}x\)
b/ Thay x = 9 vào ct \(y=\dfrac{2}{3}x\) ta có
\(y=\dfrac{2}{3}.9=6\)
Thay y = - 8 vào ct \(y=\dfrac{2}{3}x\) ta có
\(-8=\dfrac{2}{3}x\Rightarrow x=-12\)
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
http://olm.vn/hoi-dap/question/104313.html
coi hỉu j ko tui đang mò
\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)
Nhận thấy: \(\left|2x+1\right|\ge0\); \(\left|x+y-\frac{1}{2}\right|\ge0\)
=> \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
đến đây bạn thay x,y tìm đc vào A để tính nhé
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
DÀi lắm