tìm x,y,z
\(\hept{\begin{cases}3x=5y,\frac{5x}{2}=\frac{7z}{3}\\xz=47250\end{cases}}\)
ai nhanh giúp mình với mik tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x/2=7z/3
nên 15x=14z
=>x/14=z/15
3x=5y nên x/5=y/3
=>x/70=y/42=z/45
Đặt x/70=y/42=z/45=k
=>x=70k; y=42k; z=45k
Tacó: xz=47250
=>3150k2=47250
=>k2=15
TH1: \(k=\sqrt{15}\)
\(x=70\sqrt{15};y=42\sqrt{15};z=45\sqrt{15}\)
TH2:
\(k=-\sqrt{15}\)
\(x=-70\sqrt{15};y=-42\sqrt{15};z=-45\sqrt{15}\)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
ta có: \(\frac{4x}{5}=\frac{5y}{6}\Rightarrow24x=25y\Rightarrow\frac{x}{25}=\frac{y}{24}\Rightarrow\frac{x}{50}=\frac{y}{48}\)
\(\frac{3y}{8}=\frac{2z}{7}\Rightarrow21y=16z\Rightarrow\frac{y}{16}=\frac{z}{21}\Rightarrow\frac{y}{48}=\frac{z}{63}\)
\(\Rightarrow\frac{x}{50}=\frac{y}{48}=\frac{z}{63}=\frac{10x}{500}=\frac{4y}{192}=\frac{3z}{189}\)
ADTCDTSBN
có:\(\frac{3z}{189}=\frac{4y}{192}=\frac{10x}{500}=\frac{3z+4y-10x}{189+192-500}=\frac{-238}{-119}=2\)
=> x/50 = 2 => x = 100
y/48 = 2 => y = 96
z/63 = 2 => z = 126
KL:...
Đặt \(\frac{5x}{2}=\frac{7z}{3}=k\Rightarrow x=\frac{2k}{5};z=\frac{3k}{7}\)
Có \(x.z=47250\)
\(\Rightarrow\frac{2k}{5}.\frac{3k}{7}=47250\Rightarrow\frac{6k^2}{35}=47250\Rightarrow k^2=47250.35:6=275625\Rightarrow k=525\)
\(\Rightarrow x=525.2:5=210\)
\(z=525.3:7=225\)
Do \(3x=5y\Rightarrow210.3=5y\Rightarrow630=5y\Rightarrow y=630:5=126\)