Tìm n thuộc N sao cho
n + 6 chia hết n + 2
2n + 3 chia hết n - 2
3n + 1 chia hết 11 - 2n
n2 + 4 chia hết n + 1
ghi cách làm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n+4⋮n\)
do \(n⋮n\Rightarrow4⋮n\)
\(\Rightarrow n\in\left(1;2;4\right)\)
\(b,3n+7⋮n\)
do \(3n⋮n\Rightarrow7⋮n\)
\(\Rightarrow n\in\left(1;7\right)\)
\(c,27-5n⋮n\)
do \(5n⋮n\Rightarrow27⋮n\)
\(\Rightarrow n\in\left(1;3;9;27\right)\)
n + 4 chia hết cho n
vì n chia hết cho n
nên 4 chia hết cho n -> n thuộc Ư(4) = (1;2:4)
3n + 7 chia hết cho n
Vì 3n chia hết cho n
Nên 7 chia hết cho n-> n thuộc (7) = (1;7)
27- 5n chia hết cho n( 0 < n<5)
27- 5n chia hết cho n-> phép chia này có số dư bằng 0
A chia hết cho n, b chia hết cho n (a lớn hơn hoặc bằng b; a bé hơn hoặc bằng b)
Thì a – b; b – a thuộc n
Mà ta có 5n chia hết chon
Nên 27 chia hết cho n ->n thuộc Ư(27) = ( 1;3;9;27)
Mà 0 <n<5
Nên n thuộc (1;3)
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
Ta có : n+13=(n-5) + 8
Suy ra :(n-5) + 8 chia hết cho n-5
Ta có : ( n-5 ) chia hết cho n-5 mà (n-5 ) + 8 chia hết cho n-5 . Vậy 8 chia hết cho n-5
Suy ra : n-5 thuộc Ư ( 8 )
Suy ra : n-5 thuộc { 1 ;2;4;8}
Suy ra : n thuộc {6;7;9;13}
2 ) ta có : n+3 chia hết n
Mà ta có n chia hết cho n mà n+3 chia hết cho n . Vậy 3 chia hết cho n
Suy ra: n thuộc Ư (3)
Suy ra : n thuộc { 1 ;3 }
a) n+2 chia hết cho n - 1
=> n-1 + 3 chia hết cho n -1
=> n - 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
b) n +4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
=> n + 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {0;-2;2;-4}
c) 2n + 7 chia hết cho n + 1
=> n + 1 + n + 1 + 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 = {1;-1;5;-5}
=> n = {0;-2;4;-6}
d) 2n + 1 chia hết cho n - 3
=> n - 3 + n - 3 - 5 chia hết cho n - 3
=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}
=> n = {4;2;8;-2}
a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1
Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
=> n={2;0;4;-2}
b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1
Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n+1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
=> n={0;2;-2;-4}
c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1
Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
n+1 | 1 | 5 | -1 | -5 |
n | 0 | 4 | -2 | -6 |
=> n={0;4;-2;-6}
d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3
Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau:
n-3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
=> n={4;10;2;-4}
Gì mak zài zữ zậy bạn
Ta có : 3n chia hết cho 5-2n
Suy ra :2x3n chia hết cho 5-2n
hay 6n chia hết cho 5-2n (1)
Lại có :5-2n chia hết cho 5-2n
Suy ra :3x(5-2n) chia hết cho 5-2n
hay 15-6n chia hết cho 5-2n (2)
Từ (1) và (2) suy ra
6n+(15-6n) chia hết cho 5-2n
hay 15 chia hết cho 5-2n
Suy ra 5-2n E Ư(15)={1;3;5;15}
-Xét trường hợp 1
5-2n=1
2n =5-1
2n =4
n =2 (thỏa mãn n E N)
-Xét trường hợp 2
5-2n =3
2n =5-3
2n =2
n =1 (thỏa mãn n E N)
-Xét trường hợp 3
5-2n=5
2n =5-5
2n =0
n =0 (thỏa mãn n E N)
-Xét trường hợp 4
5-2n=15
2n =5-15
2n =-10
n =-5 (loại vì n không thuộc N)
Vậy n E {0;1;2}
\(a,\frac{n+6}{n+2}=\frac{n+2+4}{n+2}=1+\frac{4}{n+2}\)
Để \(n+6⋮n+2\Rightarrow\frac{4}{n+2}\in N\Leftrightarrow n+2\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(-1;0;2\right)\)
Vì \(n\in N\Rightarrow n\in\left(0;2\right)\)
\(b,2n+3⋮n-2\)
\(\Rightarrow2n-4+7⋮n-2\)
Do \(2n-4⋮n-2\Rightarrow7⋮n-2\)
\(\Rightarrow n-2\in\left(1;7\right)\)
\(\Rightarrow n\in\left(3;9\right)\)
\(d,n^2+4⋮n+1\)
\(\Rightarrow n^2+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(0;1;3\right)\)