Phân tích đa thức thành nhân tử
8 - \(\frac{x\sqrt{x}}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
7, 49y2 - x2 + 6x - 9
= 49y2 - ( x2 - 6x + 9 )
= ( 7y )2 - ( x - 3 )2
= ( 7y - x + 3 ) ( 7y - x - 3 )
8, sửa đề: 25x2 - 4y2 - 4y - 1
= 25x2 - ( 4y2 + 4y + 1 )
= ( 5x )2 - ( 2y + 1 )
= ( 5x - 2y - 1 ) ( 5x + 2y + 1 )
9, 4x2 - y2 + 8y - 16
= 4x2 - ( y2 - 8y + 16 )
= ( 2x )2 - ( y - 4 )2
= ( 2x - y + 4 ) ( 2x + y - 4 )
a, \(49y^2-x^2+6x-9=49y^2-\left(x-3\right)^2=\left(7y-x+3\right)\left(7y+x-3\right)\)
b, đề sai rồi bạn
c, \(4x^2-y^2+8y-16=4x^2-\left(y-4\right)^2=\left(2x-y+4\right)\left(2x+y-4\right)\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
\(8-\frac{x\sqrt{x}}{3}\)
\(=8-\frac{\sqrt{x^3}}{3}\)
\(=8-\frac{\left(\sqrt{x}\right)^3}{3}\)
\(=8-\frac{\left(\sqrt{x}\right)^3}{\left(\sqrt[3]{3}\right)^3}\)
\(=2^3-\left(\frac{\sqrt{x}}{\sqrt[3]{3}}\right)^3\)
\(=\left(2-\frac{\sqrt{x}}{\sqrt[3]{3}}\right)\left(4+\frac{2\sqrt{x}}{\sqrt[3]{3}}+\frac{x}{\left(\sqrt[3]{3}\right)^2}\right)\)