Biểu thức được xác định với giá trị nào của x
a, \(\sqrt{\dfrac{x-2}{x+3}}\)
b\(\sqrt{\dfrac{2+x}{5-x}}\)
Giúp vs ạ mới học nên chưa thành thạo lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{4}{2x+3}}\) xác định khi \(\dfrac{4}{2x+3}\ge0\Rightarrow2x+3>0\Rightarrow x>-\dfrac{3}{2}\)
\(\sqrt{\dfrac{2x-1}{2-x}}\) xác định khi \(\dfrac{2x-1}{2-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2-x< 0\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le x< 2\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)
2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a)điều kiện:`(x-2)/(x+3)>=0(x ne -3)`
Trường hợp 1:
\(\begin{cases}x-2 \ge 0\\x+3>0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge 2\\x>-3\\\end{cases}\)
`<=>x>=2`
Trường hợp 2:
\(\begin{cases}x-2 \le 0\\x+3<0\\\end{cases}\)
`<=>` \(\begin{cases}x \le 2\\x<-3\\\end{cases}\)
`<=>x<-3`
Vậy với `x>=2` hoặc `x<=-3` thì biểu thức được xác định
`b)ĐK:(2+x)/(5-x)>=0(x ne 5)`
`<=>(x+2)/(x-5)<=0`
Để `(x+2)/(x-5)<=0` thì tử và mẫu trái dấu mà `x+2>x-5`
`=>` \(\begin{cases}x+2 \ge 0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge -2\\x<5\\\end{cases}\)
`<=>-2<=x<5`
Vậy với `-2<=x<5` thì ...
Cảm ơn