Tính nhanh
( 9/2010 + 10/2009 + 11/2008 - 1/2018 - 1/2017) ÷ ( 1/2019 + 1/2018 + 1/2017 - 1/2010 - 1/2009 - 1/2008)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{2009}{2010}\) và \(\dfrac{2010}{2011}\)
Ta có:
\(2009.2011=4040099\)
\(2010.2010=4040100\)
Vì \(2009.2011< 2010.2010\)
nên \(\dfrac{2009}{2010}< \dfrac{2010}{2011}\)
b, \(\dfrac{2008}{2008.2009}\) và \(\dfrac{2009}{2009.2010}\)
Ta có:
\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009};\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)
Vì \(\dfrac{1}{2009}>\dfrac{1}{2010}\) nên \(\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)
Chúc bạn học tốt!!!
a)\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(\dfrac{2009}{2010}< 1\)
\(\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2009+1}{2010+1}\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2010}{2011}\)
b)
\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009}\)
\(\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)
\(\dfrac{1}{2009}>\dfrac{1}{2010}\Leftrightarrow\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)
d)
\(\dfrac{1}{3^{400}}=\dfrac{1}{\left(3^4\right)^{100}}=\dfrac{1}{81^{100}}\)
\(\dfrac{1}{4^{300}}=\dfrac{1}{\left(4^3\right)^{100}}=\dfrac{1}{64^{100}}\)
\(81^{100}>64^{100}\Leftrightarrow\dfrac{1}{81^{100}}< \dfrac{1}{64^{100}}\)
Cho x,y là các số nguyên dương, chứng minh rằng:
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
Số số hạng của dãy:(2010-7):1+1=2004(số)
Vậy có tất cả:2004:2=1002(cặp)
A=7-8+9-10+11-12+...+2009-2010
A=(7-8)+(9-10)+(11-12)+...+(2009-2010)
A=-1+(-1)+(-1)+...+(-1)
Vậy A=(-1)*1002=-1002
\(2010^2-2009^2+2008^2-...+2^2-1^2\)
\(=-\left(1^2-2^2+3^2-...+2009^2-2010^2\right)\)
\(=-\left[1^2+2^2+...+2009^2+2010^2-\left(2^2+4^2+...+2010^2\right)\right]\)
\(=-\left[\frac{2010.\left(2010-1\right)\left(2.2010-1\right)}{6}-2^2\left(1^2+2^2+...+1005^2\right)\right]\)
\(=-\left[2704847285-2^2.\frac{1005\left(1005-1\right)\left(2.1005-1\right)}{6}\right]\)
\(=-\left(2704847285-1351414120\right)=1353433165\)